

APM series Power Meters

Installation and Operation Instruction V2.3

DECLARATION

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by nay means, electronic, mechanical photocopying, recording, or otherwise without prior permission of Acrel. All rights reserved.

This company reserve power of revision of product specification described in this manual, without notice. Before ordering, please consult local anget for the latest specification of product.

CONTENTS

1. Overview	
2. Type and specification	
3. Technical Parameters	
4. Installation and wiring instructions	
4.1 Installation dimensions	
4.2 Wiring method	
5. Packaging	
6. Engineering Construction Notes	,
6.1 Voltage input	,
6.2 Current input	
6.3 Communication Wiring	,
6.4 supply voltage	
7. Operation instructions	
7.1 Display description	
7.2 Panel description	
7.3 Display overview	10
7.4 Measurement Parameters	1:
7.5 System Settings	22
7.6 Resetting data	32
8. Modbus Communication instructions	
8.1 Intruduction	3:
8.2 Communication Address Table	3:
8.3 Correspondence between communication value and actual	value53
9 Ethernet Communication Guide	5°
9.1 Ethernet Parameter Modification	5
9.2 Extension of RS485 Communication	58
10 Description of multiple rate energy	6
10.1 Viewing the multiple rate energy	6
10.2 Multiple Rate Setting	62
11 DL/T-645 Communication Guide	72
11.1 DL/T645-2007 Brief description of the agreement	72
11.2 transmission method	7
11.3 protocol	7
12 Profibus-DP guide	84
12.1 Profibus-DP Protocol overview	84
12.2 Profibus Communication function configuration	80
13 Analysis of common fault	9

1. Overview

APM series power meters of ACREL are power meters that are designed according to IEC standards and synchronized with international advanced technology.

APM series meters have full power measurement, energy statistics, analysis of power quality and network communications and other functions, are mainly used for comprehensive monitoring of the quality of power supply network.

This series of meters use a modular design, with a rich function of the external DI / DO module, AI / AO module, event recording (SOE) module with T-Flash (TF) card, network communication module, Temperature and humidity measurement module, can achieve full power measurement of electrical circuit and monitoring of switch status, Dual RS485 with Ethernet interface can realize data copying of RS485 master station, eliminating the need for data switching exchange. PROFIBUS-DP interface can realize high-speed data transmission and networking function.

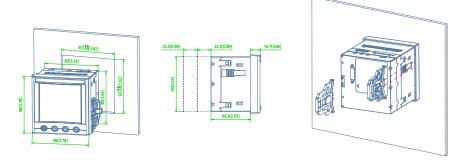
2. Type and specification

Function				APM801	APM810
	Total elec	trical measurement	(class 0.5s) √	(class 0.2s)	(class 0.5s)
Measured parameters		Irant energy	\ \ \ \	1 1	\ \ \ \ \
Pulse output of energy		out of active/reactive energy	√ √	√ V	√ V
1 23	_	use current, active power, reactive power,			
Demand		demand of apparent power, and maximum	√	√	V
		ncluding time stamp)			
	Extremun	n of current, line voltage, phase voltage, active			
	power, rea	active power, apparent power, power factor,			,
Extreme value statistics	frequency	, total harmonic of current, total harmonic of	V	V	V
	voltage in	this month and last month (including time stamp)			
	Unbalance	e of current, line voltage, phase voltage	√	√	√
	Voltage pl	nase angle, current phase angle	√	√	√
	Voltage cu	ırrent phase Angle	√	√	√
D 11	Total (odd	l, even) harmonic content of voltage and current	×	×	√
Power quality	Harmonic	content of voltage and current (2-63 times)①	×	×	√
	Voltage ci	rest factor	×	×	√
	Telephone	waveform factor	×	×	√
	Current K	-factor	×	×	√
	A total of	66 kinds of alarm types, each type can record the			
Alarm records	most rece	nt 16 alarm records, support extended records by	√	√	√
	TF card				
Event log	Record th	e most recent 128 event records, support extended	$\sqrt{}$	V	N N
Lvent log	records by	TF card	,	•	, ,
Communication	Modbus p	rotocol	√	V	√
I/O	2 digital in	nputs + 2 digital outputs (2DI+2DO)	√	√	√
Extensions	MD82	8 digital inputs + 2 digital outputs with changeover contacts (8DI+2DO)	√	V	√

MLOG	TF card storage (alarm records, event records, electrical parameters and energy timing records,	$\sqrt{}$	√	\checkmark	
	etc.)				
MA84	8 analog inputs (class 0.5) + 4 analog outputs	ما	V	N.	
WIA04	(class 0.5) (8AI+4AO)	V	V	٧	
MCM	1 RS485/Modbus-RTU, support master mode or	V	V	V	
WICWI	slave mode	*	'	•	
MCP	1 Profibus-DP	√	V	√	
MCE	1 Ethernet, support Modbus-TCP, http, SMTP,	J	V	J	
MCE	DHCP protocol	V	V	*	
	4 ways 2m of temperature measurement,				
	1 way of temperature and humidity	$\sqrt{}$	$\sqrt{}$	\checkmark	
MTH	control				
WIIII	4 ways 4m of temperature				
	measurement,1 way of temperature and	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
	humidity control				
MTP	2 ways of PT100 temperature	J	V	J	
14111	measurement	V	٧	٧	
MTH	1 way of temperature and humidity	J	V	N	
141 111	control	V	٧	V 	

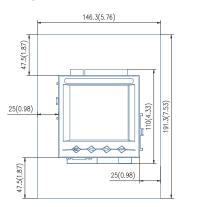
Note: Accuracy of 2~42 times harmonic measurement in the frequency range of 45~65Hz is 1%, accuracy of 43~63 times harmonic measurement in frequency 50Hz is 2%.

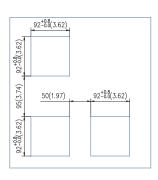
3. Technical Parameters


Technical Parameters		Index				
	Electrical network	Three-phase three-wire, three-phase four-wire, see the wiring diagram;				
	Frequency	45~65Hz;				
		Rated value: AC 100V、110V、400V、690V;				
a: 1	Voltage	Overload: 1.2 times rated value(continuous); 2 times rated value /1 second;				
Signal		Power consumption: < 0.5VA (per channel);				
		Rated value: AC 1A, 5A, support 4 mm ² line access;				
	Current	Overload: 1.2 times rated value(continuous); 10 times rated value/1 second;				
		Power consumption: < 0.5VA (per channel);				
	Voltage current	class 0.5s/class 0.2s (APM800、APM810/APM801/APM830)				
Measurement accuracy	Active power	class 0.5s/class 0.2s (APM800、APM810/APM801/APM830)				
	Reactive power	class 2				
	Harmonic	1% (2rd~42nd) 、2% (43rd~63rd)				
Switch inputs		Dry contact inputs, built-in power supply;				
Relay outputs	Contac	t type: open contact in main part, changeover contact in module;				
iceray outputs		Contact capacity: AC 250V/3A DC 30V/3A;				
Pulse output of energy		Output mode: Optocoupler pulse with open collector;				
	I	Pulse constant: 4000 (5A) 、8000 (1A) imp/kWh;				

Analog outputs		DC 0mA \sim 20mA、4mA \sim 20mA、0V \sim 5V、1V \sim 5V output, accuracy class 0.5%, load resistance \leq 500 Ω ;					
Analog inpu	ıts	DC 0mA~20m	nA、 4 mA \sim 20mA、 0 V \sim 5V、 1 V \sim 5V iutput, accuracy class 0.5 %				
Storage car	·d		Standard Capacity:4G,TF Card Up to 32G Capacity;				
Communicat	Communication		RS485 interface/Modbus-RTU protocol and DLT645 protocol Profibus-DP interface/Profibus-DP protocol; RJ45 interface (Ethernet) / Modbus-TCP, http, DHCP and other protocols;				
Power supp	ly		ing range: AC/DC 85V~265V or AC/DC 115~415V(P2); consumption: Power consumption of the main part ≤ 15VA;				
Safety	Power frequency withstand voltage	The power frequency withstand voltage between the shell and the auxiliary power supply, each input and output terminal group is AC 4kV/lmin; The power frequency withstand voltage between the auxiliary power supply and each input and each output terminal group is AC 2kV/lmin; The power frequency withstand voltage between the voltage input and other input/output terminal groups is AC 2kV/lmin; The power frequency withstand voltage between the current input and other input/output terminal groups is AC 2kV/lmin; The power frequency withstand voltage between the relay output and other input/output terminal groups is AC 2kV/lmin; The power frequency withstand voltage between each terminal group of switch input, communication, analog output and pulse output is AC 1kV/lmin;					
Electromagnetic cor	resistance npatibility	Inputs \(\text{outputs to the shell} > 100 MΩ; \) Meet IEC 61000 standard (Level 4);					
Protection le			Display panel IP52				
Environme	nt	Operating temperature: -20 °C ~ +65 °C; Storage temperature: -20°C ~ +70°C; Relative humidity: ≤95% without condensation; Altitude: ≤2500m;					
	Standards		Environmental Testing-Part 2-1:Tests Test A:Cold IDA Part 2-1:Tests Test B:Dry heat Part 2-30:Tests Test Db:Damp heat,cyclic(12+12h) Electromagnetic compatibility-Testing and measurement techniques Electrical safety in low voltage distribution system up to 1000V a.c.				
Standards			and 1500V d.c – Equipment for testing, measuring or monitoring of protective measures - Part 12: Performances measuring and monitoring devices (PMD)				
		IEC 62053-22	Electricity metering equipment (a.c.)-Particular requirements - Part22:Static meter for active energy (class 0.2s and 0.5s)				

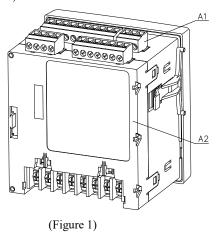
4. Installation and wiring instructions

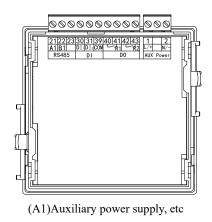

4.1 Installation dimensions

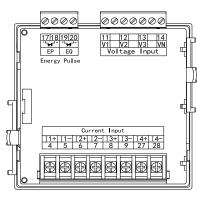

Meter and panel opening size(unit: mm(in))

Note: The maximum clamshell Angle is 90°.

Multiple meter installation (unit: mm(in))

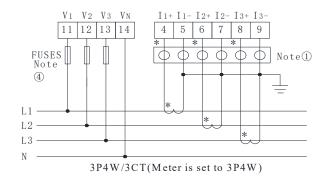


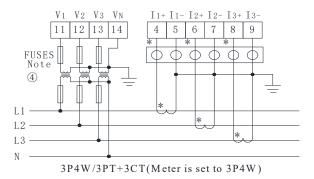

4.2 Wiring method

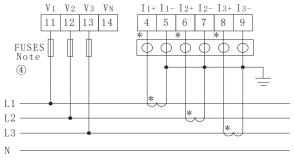

According to different design requirements, it is recommended to add a fuse (BS88 2A gG) to the power supply and voltage input terminals to meet the safety requirements of the relevant electrical specifications.

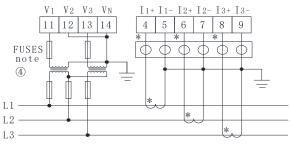
4.2.1 Main part

Terminal diagram: "4,5,6,7,8,9" is the current signal input terminal number; "11,12,13,14" the voltage signal input terminal number; "1, 2" is the meter auxiliary power terminal number. "21, 22" is the communication terminal number; "17, 18, 19, 20" is the energy pulse output terminal number; "30, 31, 39" is the switch input terminal number; "40, 41, 42, 43" is the relay output terminal number. (Figure 1)

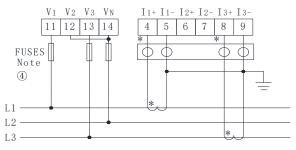


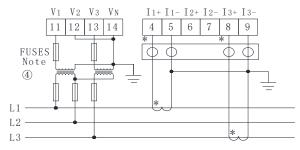




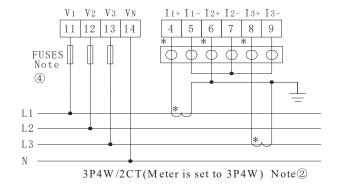

(A2)Input of voltage and current

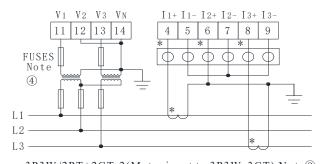
Wiring method of signal input:

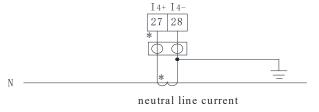




3P3W/3CT(Meter is set to 3P4W) Note 2


3P3W/2PT+3CT(Meter is set to 3P3W-3CT) Note®




3P3W/2CT(Meter is set to 3P3W-2CT)

3P3W/2PT+2CT-1(Meter is set to 3P3W-2CT)

 $3\,P3\,W/2\,PT + 2\,C\,T - 2\,(M\,eter~is~set~to~3\,P3\,W - 3\,C\,T)$ Note $\ensuremath{\ensuremath{\Im}}$

 $\verb"NOTE": \boxed{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc} \ \ This is a test terminal for shorting the secondary side of the CT.$

NOTE2:Only for balanced three-phase loads.

NOTE 3: Phase B current is only displayed and does not participate in other calculations.

NOTE4: FUSES must be equipped with a fuse with a rated current of 1A.

4.2.2 Module parts

Switch module

70 77 71	72 78 73	30	31	32	33	34	35	36	37	39
R1	R2	DI_1	DI2	DI3	DI ₄	DI ₅	DI ₆	DI7	DI8	COM ₄
Relay				Digi	tal I	nput				

Analog input and output module

60	61	62	63	64	65	66	67	69	50	51	52	53	59
AI1	AI2	AI3	AI4	AI5	AI6	AI7	AI8	COM ₂	A01	A02	A03	A04	COM ₃
	Analog Input								Ana	log Ou	tput		

Ethernet module

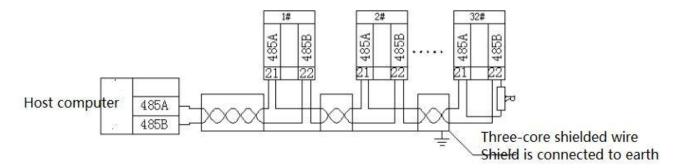
242526		
A2 B2	LAN	PROFIBUS DP
RS485		

MTP Temperature module(2*PT100)

85	84	83	82	81	80					
Thermometry										
	THE I Monie CT y									
PT2g	PT2b	PT2a	PT1g	PT1b	PT1a					

MTN Temperature module(4*NTC)

87	86	85	84	83	82	81	80				
Thormometry											
	Thermometry										
NTC4	NTC3	COM2	NTC2	NC	COM1	NTC1	NC				


MTH Temperature module (WHD)

76	75	74	93	92	91	90
	Rela	у		Sen	sor	
R1	R2		V-	SDA	SCL	V+

Note: NTC1 and NTC2 share common terminal COM1, NTC3 and NTC4 share common terminal COM2.

An example of wiring for the communication is shown in the figure below:

Correct wiring method: Communication Cable shield is connected to earth.

It is recommended to add a matching resistor between A and B at the end of the meter. The resistance range is $120\Omega \sim 10 \text{ k}\Omega$.

Note: 1. When the meter has Profibus function, for the related communication configuration and GSD file, please refer to the CD delivered with the meter.

2. The second RS485 communication only supports Modbus 03 command.

5. Packaging

The package contains the following items: Host (including plug-in terminal block), mounting brackets, factory inspection report, certificate (anti-counterfeiting label), installation instructions.

When opening the product packaging, please check carefully whether there is any damage. If any damage occurs, please inform ACREL company or agent promptly, and keep the damaged external packaging. The company will promptly replace it.

6. Engineering Construction Notes

6.1 Voltage input

The input voltage should not exceed 120% of the rated input voltage of the product (100V or 110V or 400V or 690V). Otherwise, the PT should be used; a 1A fuse must be installed on the voltage input; the wiring method of the product must be set according to the PT wiring of the product. The wiring method is as follows:

Wiring method	Selection
2 elements	3P3W
3 elements	3P4W

6.2 Current input

The standard rated input current is 1A or 5A. It requires the use of an external CT (recommended to use a wiring strip, not directly connected to the CT, in order to facilitate disassembly); ensure that the input current corresponds to the voltage, the phase sequence is consistent and the direction is consistent; if There are other meters connected in the CT circuit used, the wiring should be connected in series.

Before removing the current input connection of the product, be sure to disconnect the CT primary circuit or short the secondary circuit!

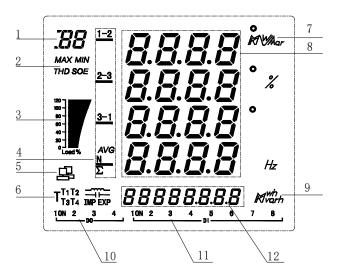
6.3 Communication Wiring

The meter provides asynchronous half-duplex RS485 communication interface, using MODBUS-RTU protocol, various data information can be transmitted on the communication line.

Theoretically, up to 128 power meters can be connected simultaneously on a single line. Communication address of each power meter can be set. When wiring, keep communication lines away from power cables or other strong electric-magnetic field

6.4 supply voltage

The conventional power supply voltage of the instrument: AC/DC 85-265V; supply voltage with P2 funcion: AC/DC 115-415V.

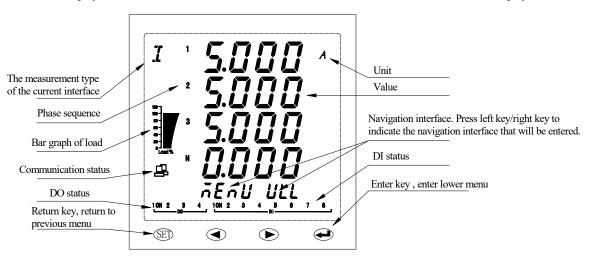

7. Operation instructions

7.1 Display description

APM series uses LCD segment LCD display, the following table shows the segment codes for different characters.

Α	b	С	d	Е	F	g	Н	i/	' I
R	b	C	4	E	F	3	H	,	
J	K	L	М	n	0	P	q	r	S
	7		Ā	n		P	7	,	5
t	U	v	W	Χ	у	Z	_	_	Ш
F	L	L	ľ	4	4	2	-		1

The following figure shows the screen when all character fields and indications are all lit.



The following table is a description of all the measurement and indication.

No.	Display content	Instruction
	I/U/P/Q/S/PF/d	Identify what is displayed in the current measurement data display area 8:
1	1/0/F/Q/S/F1/d	Current / Voltage / Active Power / Reactive Power / Apparent Power / Power Factor / Demand
	IO/AL/SD	DI, DO, AI, AO status/alarm log/TF card status
	MAX/ MIN	Records of maximum / minimum
2	THD	Total harmonic distortion
	SOE	Sequence Of Event

3	Display of load size	Indicate the percentage of the current load current relative to the rated current, 90% to 110%, the histogram shows 100%, and so on.
	1-2,2-3,3-1	1、2、3: Values of ABC three-phase, 1-2,2-3,3-1: Value of the AB, BC, CA three-line
4	AVG	Average value
4	N	Neutral current
	Σ	Total power
5	Communication status symbol	Lights up to indicate that the current communication is being sent and received normally
6	IMP/ EXP//	Absorption total active energy / release total active energy / inductive reactive energy / capacitive reactive energy
0	T1, T2, T3, T4, T5,T6,T7,T8,T	T1-T5:Correspond to tip, peak, flat, valley and deep valley respectively,T6-T8 reserved. T: Indicating the total energy for the month
7	Unit of measurement data	Current: A, kA; Voltage: V, kV; Active power: kW, MW; Reactive power: kVar, MVar; Apparent power: kVA, MVA; Percentage: %; Frequency: Hz
8	Display area of measurement data	Current, voltage, power, power factor, time, parameter settings, etc.
9	Units of energy	Active energy: kWh, MWh; Reactive energy: kVarh, Mvarh
10	DO status indication	The status of DO1-DO4. The remaining DO can be viewed under the main loop IO
11	DI status indication	The status of DI1-DI8. The remaining DI can be viewed under the main loop IO
12	Energy data area	Left and right navigation bar, corresponding to the left and right buttons menu; Electrical measurement display and parameter setting

The meter will display the model number and version information, and then the current interface will be displayed.

7.2 Panel description

Key description

The four keys are, the SET key, the left key, the right key, and the enter key from left to right.

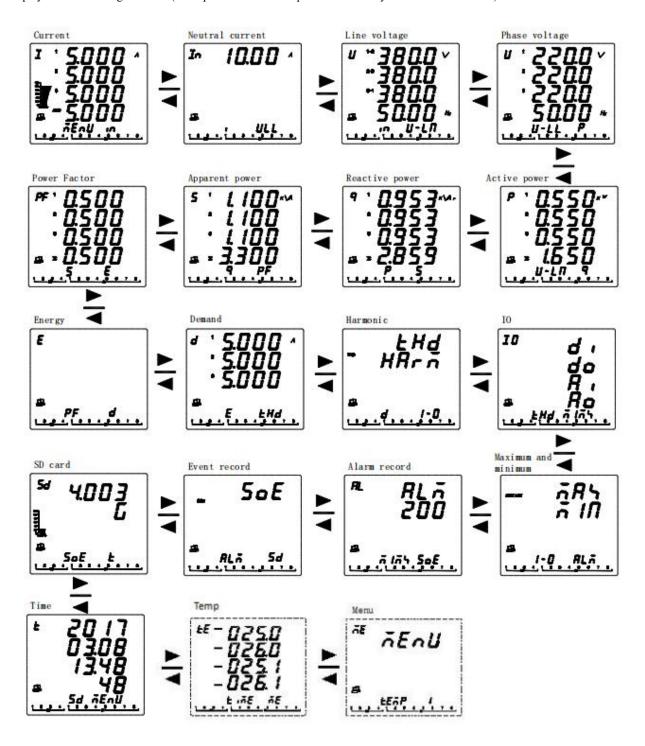
Key	Function
SET	Return to previous menu
Left	Decrease parameter or switch navigation interface

Right	Increase parameter or switch navigation interface
Enter	Modify and confirm the parameters or enter the next menu

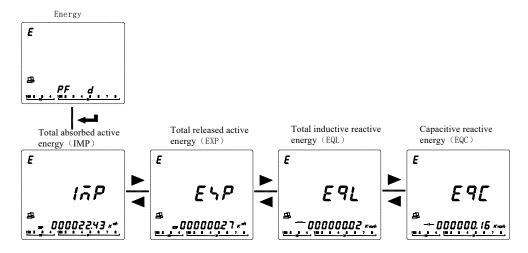
Extended module indicator light description

	Flashing (1s)	Flashing (0.2s)	Bright	Extinguished
(GREEN)	Module OK	Module error	/	Module is not running

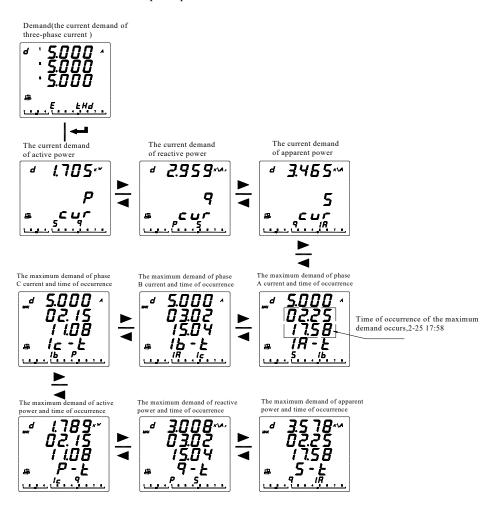
7.3 Display overview


First level menu	Second level menu	Third level menu	Fourth level menu	Note
	SET (Settings)			See the system settings for details
		E (Clear energy)		See data reset for details
		dMd (Clear		
		demand)		
		ALM (Clear alarm		
	RST (Reset)	record)		
nEnU _{MENU}	KST (Reset)	SOE (Clear event		
1,721,10		record)		
		MAX MIN (Clear		
		extremum)		
		SD (Format TF		
		card)		
		Version, Software		
	DIAG (diagnosis)	number, Module		
		version		
I	I_Unablance (Unbalance of current)			
.4	Current phase angle			
I (current)	Voltage current phase Angle			
In				
In (neutral current)				
ULL (line	U_Unablance (unbalance of line voltage)			
voltage)	Offset (Line voltage offset)			
11_1 🖺	V_Unablance (Unbalance of phase voltage)			
∐-L∏ _{ULN}	offset (Phase voltage deviation)			
(phase voltage)	Angle (Voltage phase angle)			
P				
P (active power)	10			

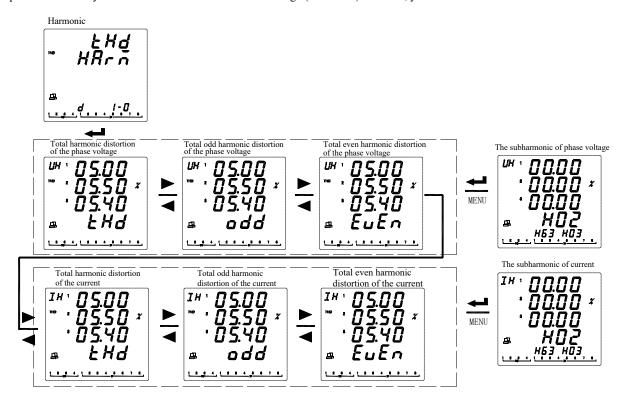
_			
7			
Q (reactive power)			
ζ			
S (apparent power)			
_	IMP (Absorb active energy)		
Ľ	EXP (Release active energy)		See energy view
E (energy)	EQL (Inductive reactive energy)		for details
	EQC (Capacitive reactive energy)		
	Current active power demand		
	Current reactive power demand		
	Current apparent power demand		
	Phase A current maximum demand and time of		
	occurrence		
1	Phase B current maximum demand and time of		
l G	occurrence		See demand view
d (current demand for	Phase C current maximum demand and time of		for details
three-phase current)	occurrence		
,	Active power maximum demand and time of		
	occurrence		
	Reactive power maximum demand and time of		
	occurrence		
	Apparent power maximum demand and time of		
	occurrence		
0 5			
PF (power factor)			
	UH THD (Total harmonic distortion of phase		
	voltage)	2-63 harmonics of	
	UH ODD (Total odd harmonic distortion of	three phase	
	phase voltage)	voltage	
	UH EVEN (Total even harmonic distortion of	S	See harmonics for
	phase voltage)		details
ŁXd	IH THD(Total harmonic distortion of current)		
THD	IH ODD(Total odd harmonic distortion of	2-63 harmonics of	
	current)	three phase current	
	IH EVEN(Total even harmonic distortion of	•	
	current)		
	CF (Crest factor)		
	THFF (Telephone waveform factor)		
	KF(K factor)		
7 6	DI (Digital input)		
<i>I G</i>	DO (Digital output)		See IO for details
IO (Inputs and outputs)	AI (Analog input)		500 10 101 details


	I (Current)	Maximum of this		
	U (Voltage)	month and time of		
	P (Active power)	occurrence;		
	Q (Reactive power)	Minimum of this		
585		month and time of		
- '-' \n	S (Apparent power)	occurrence;		See the maximum
785 711	PF (Power factor)	Maximum of last		and minimum for
MAX/MIN (Maximum	F (Frequency)	month and time of		details
and minimum)		occurrence;		
	THE /T (11 C)	Minimum of last		
	THD (Total harmonic distortion)	month and time of		
		occurrence;		
		Detailed alarm		
	LAST ALM (last 16 alarm records)	record alarm		
		1 A (Phase A	Alarm details	
		· ·	Alarm details	
		overcurrent)		
		2 B (Phase B	•••	
		overcurrent)		
D1 =	ATTOL (O	3 C (Phase C		
RL A _{ALM}	AT01 (Overcurrent alarm)	overcurrent)		See the alarm for
(Alarm record)		4 MAX		details
		(Maximum		
		overcurrent)		
		5 N (Neutral		
		overcurrent)		
	AT02 (Undercurrent alarm)			
				1
	AT13 (Other alarm)			
SoF				
SOE (Evert record)	AT13 (Other alarm) Record of the last 128 events			
SOE (Event record)				
SOE (Event record)				
SOE (Event record)				
SOE (Event record) TF (TF card capacity)				
SOE (Event record)	Record of the last 128 events			
SOE (Event record) TF (TF card capacity) TIME (system time)	Record of the last 128 events 4-way temperature			
SOE (Event record) TF (TF card capacity)	Record of the last 128 events			

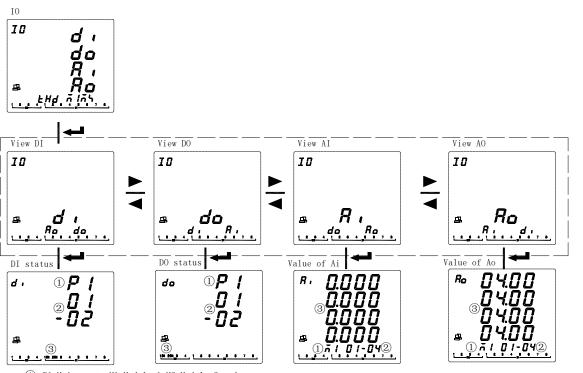
7.4 Measurement Parameters


The power parameter overview: After the meter is powered on, the current is displayed. Press the left and right keys to switch the display to the following interface (some parameters need to press the enter key to enter the next level):

View energy: Press ◆ button in the main interface until the current measurement data display area shows E, then press ENTER, press ◆ button to switch the display: IMP (total absorbed active energy) ←→EXP (total released active energy) ←→ EQL (total inductive reactive energy) ←→ EQC (capacitive reactive energy).



View demand: Press ◆ button on the main screen until the current measurement data display area shows d. The measurement data area displays the current demand of three-phase current and press the enter key. Press ◆ key to view the current demand of active power, the current demand of reactive power, the current demand of apparent power, the maximum demand of three-phase current and time of occurrence, and the maximum demand of three-phase power and time of occurrence.



View harmonic (APM810 only): Press ◆ key on the main screen until the current measurement data display area shows THD, the measurement data area shows THD, HARM, and press the enter key. Press the ◆ key to view the total harmonic distortion of the

voltage, the total odd harmonic distortion of the voltage, the total even harmonic distortion of the voltage even, the total harmonic distortion of the current, the total odd harmonic distortion of the current, and the total even harmonic distortion of the current. After you press the enter key at the total harmonic distortion of voltage (or current) interface, you can view the subharmonics.

View IO (Input and output): Press ◆ key on the main screen until the current measurement data display area shows IO, and the measurement data area shows DI, DO, AI, AO, press enter. Press the ◆ keys to select the information to be viewed (DI: digital input, DO: digital output, AI: analog input, AO: analog output).

- ① P1:Main part; M1:Module 1 M2:Module 2, and so on.
- ② Take DI for example, DI1-DI2 status is indicated at ③,others is similar.
- ③ Indicate status or values of DI/DO/AI/AO.

View maximum and minimum values: Press ◆ key on the main screen until the current measurement data display area shows MAX MIN and press enter. Press ◆ key to select the extreme value record of the electric parameters (I, U, P, Q, S, PF, F, THD, etc.) to be viewed and press the Enter key. Press the ◆ key to view the current month's maximum value, the current month's minimum value, the previous month's maximum value, the previous month's minimum value, and the time of occurrence of the selected electrical parameter. When a month span occurs, the extreme value of this month is automatically deposited into the extreme value of the previous month.

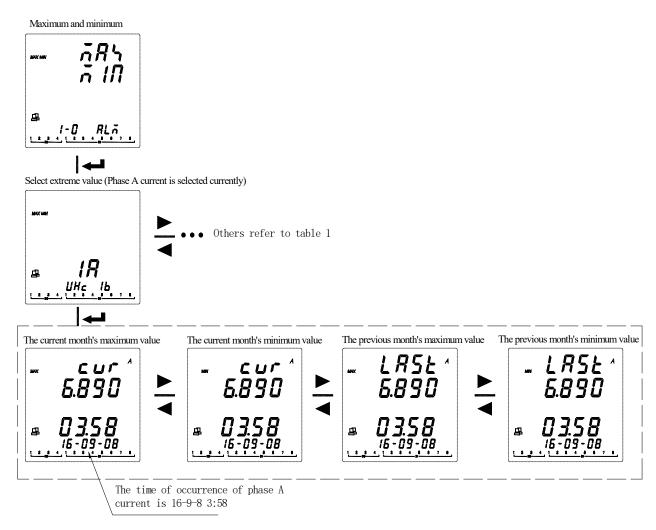


Table 1: Extreme Values and symbol description

Symbol	Instruction	Symbol	Instruction	Symbol	Instruction
IA	Phase A current	PT	Total active power	IHC	Total harmonic of Phase C
					current
IB	Phase B current	QA	Phase A reactive power	UHA	Total harmonic of Phase A
					voltage
IC	Phase C current	QB	Phase B reactive power	UHB	Total harmonic of Phase B
					voltage
IN	Neutral current	QC	Phase C reactive power	UHC	Total harmonic of Phase C
					voltage
IAV	Average current	QT	Total reactive power		
UA	Phase A voltage	SA	Phase A apparent power		
UB	Phase B voltage	SB	Phase B apparent power		
UC	Phase C voltage	SC	Phase C apparent power		
ULN (AVG)	Average phase voltage	ST	Total apparent power		
UAB	Phase AB line voltage	PFA	Phase A power factor		

UBC	Phase BC line voltage	PFB	Phase B power factor	
UCA	Phase CA line voltage	PFC	Phase C power factor	
ULL (AVG)	Average line voltage	PFT	Total power factor	
PA	Phase A active power	F	Frequency	
PB	Phase B active power	IHA	Total harmonic of Phase A current	
PC	Phase C active power	IHB	Total harmonic of Phase B current	

View the alarm: Press ◆ on the main screen until AL is displayed in the current measurement data display area, ALM is displayed in the measurement data area, and then press the Enter key. You can view the last 16 alarm records (Last Alm) in chronological order and view alarm records by alarm type.

APM series of meters can record 66 kinds of alarms, divided into 13 kinds of alarm categories (AT01 overcurrent, AT02 undercurrent, etc., see Table 2), each type of alarm includes a number of alarm subcategories (for example, the AT01 overcurrent alarm includes Phase A overcurrent, Phase B overcurrent, Phase C overcurrent, etc., see Table 2). Each alarm subclass can record up to 16 alarm records. When there are 16 or more alarm records, the principle of first in, first out is implemented. The newly generated alarm will automatically overwrite the oldest record. Each alarm record contains the alarm value, alarm group, alarm action (action or recovery), and alarm time. If an expansion module (including a TF card) is purchased, all alarm data will be automatically synchronized to the TF card for storage.

Note: The TF card cannot record all more than 16 alarm records that were simultaneously generated within 2 seconds.

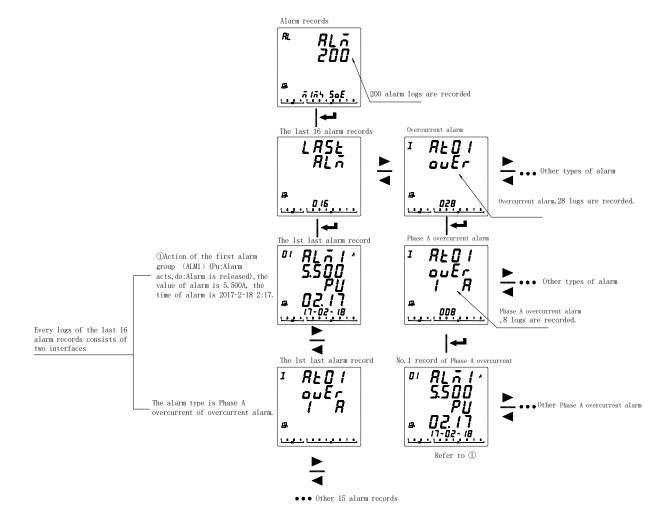
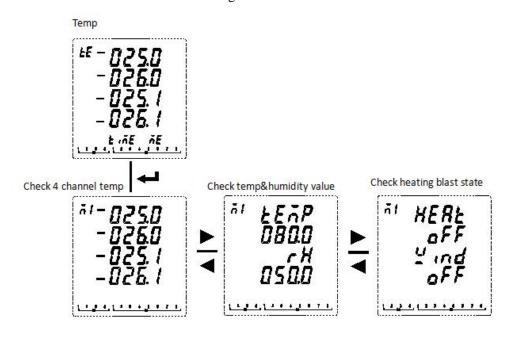
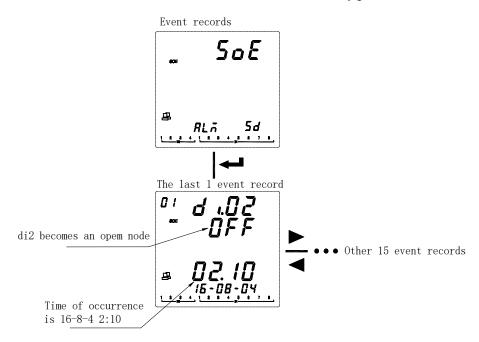



Table 2: Alarm classification description

A.1	Alarm	subcategories	Alarm content	Alarm communication
Alarm categories	Symbol I	Symbol II	Alarm content	code
		1 A	Phase A overcurrent	0
AT01 (Overcurrent)		2 B	Phase B overcurrent	1
	I Over	3 C	Phase C overcurrent	2
		4 MAX	Maximum overcurrent	3
		5 N	Neutral overcurrent	4
		1 A	Phase A undercurrent	5
		2 B	Phase B undercurrent	6
AT02 (Undercurrent)	I Unde	3 C	Phase C undercurrent	7
		4 MAX	Minimum undercurrent	8
		5 N	Neutral undercurrent l	9
		1 A	Phase A overvoltage	12
		2 B	Phase B overvoltage	13
		3 C	Phase C overvoltage	14
ATT02 (O. 1.)		4 L-N	Maximum phase overvoltage	15
AT03 (Overvoltage)	U Over	5 AB	Phase AB overvoltage	16
		6 BC	Phase BC overvoltage	17
		7 CA	Phase CA overvoltage	18
		8 L-L	Maximum line overvoltage	19
	U Unde	1 A	Phase A undervoltage	20
		2 B	Phase B undervoltage	21
		3 C	Phase C undervoltage	22
		4 L-N	Minimum phase undervoltage	23
AT04 (Undervoltage)		5 AB	Phase AB undervoltage	24
		6 BC	Phase BC undervoltage	25
		7 CA	Phase CA undervoltage	26
		8 L-L	Minimum line voltage undervoltage	27
		1 P	Total active overpower	31
AT05 (Overpower)	P Over	2 Q	Total reactive overpower	32
		3 S	Total apparent overpower	33
		1 P	Total active underpower	34
AT06 (Underpower)	P Unde	2 Q	Total reactive underpower	35
		3 S	Total apparent underpower	36
		1 Over	Overdemand alarm of active power	59
AT07 (Demand alarm)	Pd dMd	2 Unde	Underdemand alarm of active power	60
AT08 (Power factor		1 Over	Total over power factor	37
alarm)	PF PF	2 Unde	Total under power factor	38
		1 IA	Over THD of Phase A current	41
		2 IB	Over THD of Phase B current	42
AT09 (Total Harmonic		3 IC	Over THD of Phase C current	43
Alarm)	THD	4 UA	Over THD of phase A voltage	44
		5 UB	Over THD of phase B voltage	45
		6 UC	Over THD of phase C voltage	46
AT10 (Total Even	EVEN	1 IA	Over TEHD of Phase A current	47


				T
Harmonic Alarm)		2 IB	Over TEHD of Phase B current	48
		3 IC	Over TEHD of Phase C current	49
		4 UA	Over TEHD of Phase A voltage	50
		5 UB	Over TEHD of Phase B voltage	51
		6 UC	Over TEHD of Phase C voltage	52
		1 IA	Over TOHD of Phase A current	53
		2 IB	Over TOHD of Phase B current	54
AT11 (Total odd	044	3 IC	Over TOHD of Phase C current	55
harmonics Alarm)	Odd	4 UA	Over TOHD of Phase A voltage	56
		5 UB	Over TOHD of Phase B voltage	57
		6 UC	Over TOHD of Phase C voltage	58
	di	1 di1	DI1 ON/OFF	62
AT12		2 di2	DI2 ON/OFF	63
AT12		3 di3	DI3 ON/OFF	64
		4 di4	DI4 ON/OFF	65
	Oth	1 I-Ubl	Max unbalanced current	10
		2 U-Ubl L-N	Max unbalanced phase voltage	28
		3 U-Ubl L-L	Max unbalanced line voltage	29
AT12 (OIL)		4 F Over	Over Frequency	39
AT13 (Other)		5 F Unde	Under Frequency	40
		6 I Loss	Current Loss	11
		7 U Loss	Voltage Loss	30
		8 PHA Rev	Phase Reversal	61
AT14(Temperature)	Тетр	1	1st way temperature	66
		2	2 nd way temperature	67
		3	3 rd way temperature	68
		4	4 th way temperature	69

To check the temperature and humidity:Press < ▶ >key in the main interface,Until the current measurement data display area displays TE, the measurement data area displays temperature,then press< ENTER>key.You can check the four channel temperature.At the temperature interface press < ▶ > Key to check the temperature and humidity sensor value and the state of the heating blast.

View event record (SOE): When the DI/DO status is changed, event records can be generated. The main body can store up to 128 event records. If you purchased an expansion module (including a TF card), all event log data will be automatically synchronized to the TF card for storage.

Note: The TF card cannot record all more than 16 alarm records that were simultaneously generated within 2 seconds.

See the TF card data record: After power off, remove the TF card and use a card reader or other device to plug it into the computer for reading.

The data log files included in the TF card are: Alarm (Alarm data), Energy (Timed recording energy data), Harmonic (Harmonic data), Maintain (Basic parameter data), Record (Timed recording electrical parameter data), SOE (Event log data), APM800Config.ini (Parameter log file settings), Temperature (Temp&Humidity data) ReadMe.txt (Guide).

Note: If the system time is set incorrectly, the TF card will not be recognized.

- ① Alarm data: Open the Alarm folder. The folder contains subfolders named "Year_Month" (For example: 2018_02). The subfolder contains the .csv record file named "Alarm Type" (eg: Over THD. Csv), you can view the alarm data. The log file contains: date; time; alarm group; alarm type; alarm value; alarm status.
- ②View the timed energy record data: Open the Energy folder, and the folder contains the .csv record file (2018_02.csv) named "Year_Month" to view the timed energy record data. The log file contains: date; time; positive active energy; reverse active energy; inductive reactive energy; capacitive reactive energy; positive active energy in T1 period; positive active energy in T2 period; positive active energy in T3 period; positive active energy in T4 period.

Note: The meter records 1 time energy data (primary side) by default for 1 hour. It also includes the positive active energy in each time period. The time interval can be set. The time interval unit is Hour.

Symbol Content		Symbol	Content
IMP Positive active energy		IMP(T1)	Positive active energy in T1 period
EXP	Reverse active energy	IMP(T2)	Positive active energy in T2 period
EQL	Inductive reactive energy	IMP(T3)	Positive active energy in T3 period
EQC	Capacitive reactive energy	IMP(T4)	Positive active energy in T4 period

③ View harmonic data: Open the Harmonic folder, which contains subfolders named "Year_Month" (For example: 2018_03), and the subfolder contains a .csv log file named "Year Month Date" (eg :2018_03_31.csv), you can view harmonic data. The log file contains:

date; time; three-phase phase-separated voltage, current total harmonic value (maximum, minimum); three-phase phase-separated voltage, total odd current harmonic, total even harmonic value (maximum, minimum)); three-phase phase-separated voltage and current fractional harmonic values (maximum, minimum, recorded 2-63 harmonic data).

Note: The meter records 1 time harmonic data (primary side) by default for 1 minute, the time interval can be set, and the time interval unit is minute.

(4) View the main parameter change record: Open the Maintain folder, the folder contains the "Maintain.csv" log file, you can view the parameter change record. The log file contains: date; time; parameter type (such as: primary side voltage and current value; secondary side voltage and current value; 485 communication address and baud rate); new parameter value.

⑤View timed electrical parameter record data: Open the Record folder, which contains subfolders named "Year_Month" (eg 2018_03), and the subfolder contains the .csv log file named "Year_Month_Date" (Example: 2018_03_31.csv), you can view the timed electrical parameter record data. The log file is as follows:

Note: The meter records 1 time electric parameter data (primary side) by default for 1 minute, the time interval can be set, and the time interval unit is minute.

Symbol	Content	Symbol	Content	Symbol	Content
IA(A)	Phase A current	UBC(V)	Phase BC line voltage	PT(W)	Total active power
IB(A)	Phase B current	UCA(V)	Phase CA line voltage	QA(Var)	Phase A reactive power
IC(A)	Phase C current	U_LLL_AVG(V)	Average line voltage	QB(Var)	Phase B reactive power
IN(A)	Neutral current	UA_UBL(%)	Unbalance of Phase A voltage	QC(Var)	Phase C reactive power
I_AVG(A)	Average current	UB_UBL(%)	Unbalance of Phase B voltage	QT(Var)	Total reactive power
IA_UBL(%)	Unbalance of Phase A current	UC UBL(%)		SA(VA)	Phase A apparent power
IB_UBL(%)	Unbalance of Phase B current	se U_LN_UBL(%) Unbalance of p		SB(VA)	Phase B apparent power
IC_UBL(%)	Unbalance of Phase C current	UAB_UBL(%)	Unbalance of AB line voltage	SC(VA)	Phase C apparent power
I_UBL(%)	Unbalance of current	UBC_UBL(%)	Unbalance of BC line voltage	ST(VA)	Total apparent power
UA(V)	Phase A voltage	UCA_UBL(%)	Unbalance of CA line voltage	F(Hz)	Frequency
UB(V)	Phase B voltage	U_LL_UBL(%)	Unbalance of line voltage	PFA	Phase A power factor
UC(V)	Phase C voltage	PA(W)	Phase A active power	PFB	Phase B power factor
U_LN_AVG(V)	Average phase voltage	PB(W)	Phase B active power	PFC	Phase C power factor
UAB(V)	AB line voltage	PC(W)	Phase C active power	PF	Total power factor

⑥View event log data: Open the SOE folder, which contains the .csv log file named "Year_Month" (for example: 2018_03.csv) to view the event log data. The log file contains: date; time; DIDO serial number; action type.

Note: The data in the TF card is read-only, and the file record data is excel. Please open it with Microsoft Office Excel07 version and above 07 version. If it is lower than Microsoft Office Excel07 version or WPS, there will be some data loss.

[©]Check the Temperature and humidity data: open the Temperature folder, folder containing "year _ month _ date" named. CSV record file (such as :2020_03_31. CSV), you can see the Temperature and humidity data. The record file contains: date; Time; Temperature and humidity measurement; Maximum and minimum.

7.5 System Settings

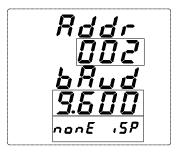
To set up the APM series meter, follow the instructions below:

- ① Press at the measurement screen until Menu is selected and press ENTER.
- ② Press ◆ until Set is selected and press ENTER.
- ③ Enter your password. The default password is 0001 and the universal password is 0008.
- 4 Select the parameters to be modified.

Modify the parameters as follows:

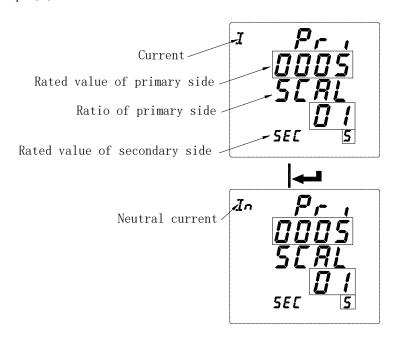
- ①When a value or character is selected, flashing indicates that it can be modified.
- ② 1) For values that do not need to distinguish ones, tens,hundreds, thousands, use the ◆ keys to change the currently selected value.
- 2) To achieve the method to increase or decrease the value of ones, tens,hundreds, thousands, you need to press ◀ to select the bit that need to be modified, and press ► to change the value of the selected bit.
 - ③ Press Enter to save the changes and move to the next area.
- ④ Press the SET button before saving, prompt for saving will appear. Press the left or right key to select yes/no. When you select yes, press Enter to save the setting parameters. When you select no, press Enter will not to save the setting parameters.

7.5.1 System Settings Overview (SET):


First level	Second level	Third level	Range			
		Addr	Address:1-247			
	BUS 1 (First way)	Baud	Baud rate: 1200,2400,4800,9600,19200,38400			
			Mode: None 1sp (No parity, 1 stop bit)			
Bus		Mode	None 2sp (No parity, 2 stop bits)			
(communication			Odd 1sp (Odd check, 1 stop bit)			
)			Even 1sp (Even parity, 1 stop bit)			
	BUS2	Same as BUS1	Extended RS485 module			
	DLT 645	Addr	645 Address: 0-99999999999			
	Profibus	Addr	Profibus Address: 1-127			
		I Pri	Primary rated current: 1A-32760A			
	Rto.i	I Scal	=Pri*Scale (See current ratio setting)			
		I Sec	Secondary rated current rating: 1A, 5A			
		In Pri	Primary neutral rated current: 1A-32760A			
		In Scal	=Pri*Scal			
		In Sec	Secondary neutral rated current rating: 1A, 5A			
SYS (System)	Rto.u	U Pri	Primary rated voltage: 100V-1200kV			
		U Scal	=Pri*Scal			
		U Sec	Secondary rated voltage rating: 100V, 110V, 400V, 690V			
	Line		Wiring:			
			3P3W_3CT: Three-phase three-wire 3CT			
			3P3W_2CT: Three-phase three-wire 2CT			
			3P4W: Three-phase four-wire			
	nom	U.nom	Nominal value of secondary voltage,used to calculate voltage deviation			
	nom	F.nom	Nominal value of frequency used to calculate frequency deviation.			

	Puls		Pulse constant: 0-9999, see system setup section		
	AL1		The first group of alarms: see the alarm setting section for details.		
ALM (Alarm)	AL2		The second group of alarms		
	Wid		Window sliding time: 1, 2, 3, 5 minutes		
dMd (Demand)	Pd		Period: 5-60 minutes		
			Calculation method of unbalance:		
			Absolute (Absolute value algorithm)		
			(The difference between the maximum value deviating from the average		
Ubl (Unbalance)	Meth		and average value) / average *100%		
			Rated (Rated algorithm)		
			If the average value of the denominator in the above equation is less than the		
			rated value, the denominator is the rated value.		
	DI	Init	Initial state: N-O (Normally open) / N-C (Normally closed)		
		Init	Initial state: N-O (Normally open) / N-C (Normally closed)		
			ALM1 (Associated with alarm 1, see DO setting)		
Di-o (Digital		TYPE	ALM2 (Associated with alarm 2, see DO setting)		
inputs and	DO	TIL	COM (Communication control)		
outputs)	ЪО		Effective when controlled by communication. When it is set to 0, it is the		
		DLY	level control mode. If it is not 0, it is the pulse control mode. After the delay		
		DLI	time is set, it will be disconnected. Unit: 1 second.		
		TVDE			
		TYPE	Input Type: 0-20mA, 4-20mA, 0-5V, 1-5V		
	AI	Dot	Decimal point: 0-3		
		High	High value of display: 0-9999		
Ai-o (Analog		Low	Low value of display: 0-9999		
inputs and		TYPE	Output Type: 0-20mA, 4-20mA, 0-5V, 1-5V		
outputs)		SEL	Select the corresponding signal, and see the analog output set.		
	AO	High	Corresponding value of high point of analog output (Primary value)		
		Low	Corresponding value of low point of analog output (Primary value)		
		ofs	Offset (Based on 16mA/4V)		
	IP		IP address		
nET (Ethernet)	SUB		Subnet mask		
nET (Ethernet)	GATE		Gateway		
	PORT		Port number: 1-9999		
Time	Minute, second,		See the time setting section		
Time	year, month, day		See the time setting section		
PASS	set		Password of parameter setting: 0-9999		
			Reset password: 0-9999		
(Password)	rst		Reset password. 0-9999		
	rst		0: Always bright		
LCD	rst		0: Always bright		
	rst		0: Always bright		
LCD	rst		0: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds.		
LCD (Backlight)	rst	H.dry	0: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds.		
LCD (Backlight)		-	0: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds. Heat to remove moisture, can set the temperature, Amount of hysteresis(Hys), delay (DLY).		
LCD (Backlight) WHD (Temp&Humi	rst No X	H.dry Heat	O: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds. Heat to remove moisture, can set the temperature, Amount of hysteresis(Hys), delay (DLY). Heating up, can set the temperature, Amount of hysteresis(Hys), delay		
LCD (Backlight)		-	0: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds. Heat to remove moisture, can set the temperature, Amount of hysteresis(Hys), delay (DLY).		

(heater or fan) when it starts working and the temperature or humidity value when it stops working is called hysteresis.


7.5.2 Communication settings

- 1. After entering setup mode (the same settings below), press ◆ until BUS is selected and press Enter.
- 2. Press the ◆ keys to select the communication parameters (bus1/bus2/DLT645/Profibus) and press the Enter key.
- 3. Set ADDR (communication address), range: 1-247 and press the Enter key.
- 4. Select bAUd (baud rate) and press the Enter key.
- 5. Select Mode (check mode and stop bit) and press the Enter key.
- 6. Press the SET button to return to the R485 BUS interface.

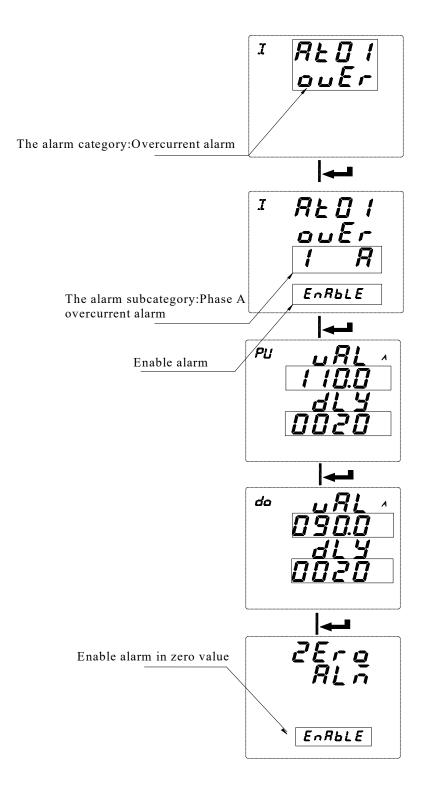
7.5.3 System setting (Current ratio)

- 1. Press ◆ until SYS is selected and press the Enter key.
- 2. Press ◆ until Rto.i is selected and press the Enter key.
- 3. Input the rated value of primary side current(I Pri) and press the Enter key.
- 4.Enter the ratio of primary side current (SCALE), optional *01, *10 times, used to set the primary side current greater than 9999A, the actual rated value of primary side current is Pri*SCAL, If you need to set the primary side current to 10000A, you can set Pri=1000, SCAL=10;
- 5. Select the value of rated secondary side current (I Sec) and press the Enter key.
- 6. Enter the the rated value of primary side (In Pri), the ratio of primary side (SCAL), and the rated value of secondary side (In Sec) for the neutral current. Refer to steps 3, 4, and 5.

7.5.4 Voltage ratio setting refers to current ratio setting

For example: If the current input is connected by external CT and the rated value is 40A/5A, set the rated value of primary side current to 40A, the scale value to 1, and the rated value of secondary current to 5A. Neutral current setting is the same. If the voltage input is connected by external PT and the rated value is: 6000V/400V, then set the rated value of the primary voltage to 6000V, the scale value to 1, and the rated value of secondary voltage to 400V.

7.5.5 Pulse constant setting (Only APM801 can be set)

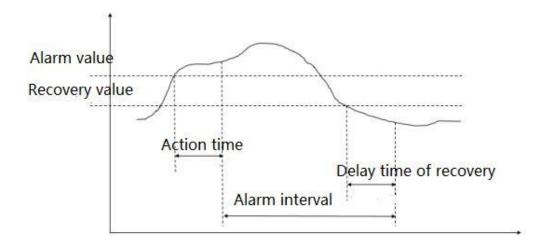

When the pulse constant is set to 0, the default is 8000 when the rated value of the secondary side current is 1A, and the default is 4000 when the rated value of the secondary side current is 5A. When the pulse constant is set to non-zero, the actual pulse constant is the setted value*100. For example, if the set value is 50, the actual pulse constant is 5000.

Note: ① The primary value must be greater than or equal to the secondary value.

② Only the APM801 can set the pulse constant.

7.5.6 Alarm Settings

- 1. Press ◆ until ALM is selected and and press the Enter key.
- 2. Press ◆ key to select the alarm group (a total of two groups of alarms) and press the Enter key.
- 3. Press the ◆ keys to select the alarm category (Refer to Table 2 of 7.4 Alarm View) and press the Enter key.
- 4. Under the alarm category, select the alarm subclass (Refer to Table 2 of 7.4 Alarm View) and press Enter key.
- 5. Enable selected alarm type (ENABLE or disable selected alarm type (DISABLE) and press the enter key.
- 6. Input the value of alarm action (primary value). For some parameters, you can set the negative value. Press the ◆ key at the same time to switch the positive and negative signs and press the enter key.
- 7. Enter the delay time of alarm action and press the enter key.
- 8. Enter the recovery value of alarm (primary value) and press the enter key.
- 9. Enter the delay time of alarm recovery and press the enter key.
- 10. Enable alarm in zero value(low value of alarm is effective) and press the enter key.
- 11. Return to the third step and make other alarm settings.
- 12. Press the SET button to return.



The parameter symbol description for settings

	Indication area symbol	Symbols of display area	Range
Enable settings			ENABLE, DISABLE
Parameter settings	DII (D' 1 II)	VAL (Alarm value)	0-9999
	PU (Pick Up)	dLy (Alarm delay value, accurate to second)	0-9999
	D (D O t)	VAL (Recovery value)	0-9999
	Do(Drop Out)	dLy (Recovery delay value, accurate to second)	0-9999
		ZERO ALM (Enable or disable zero alarm)	ENABLE, DISABLE

Note: For high alarm types, the recovered value must be less than the alarm value. For low alarm types, the recovered value must be greater than the alarm value.

The following is a schematic of how the meter handles alarm parameters.

Alarm description:

The meter has two groups of alarms. Each group of alarms can detect a variety of alarm conditions, including changes in the inputs of the electronic parameters, phase loss, reverse phase sequence, unbalance, and harmonics. The switch input and reverse phase sequence only need to set the enable bit, and other alarms need to set the alarm condition.

7.5.7 Alarm Type Description

7.5.7.1 Electric parameter alarm

Overcurrent: Zero alarm setting does not apply to overcurrent alarm. When the single phase current is greater than or equal to the action value and meets the set action delay time, the single phase overcurrent alarm starts; when the single phase current is lower than the set recovered value and meets the delay time. The single phase overcurrent alarm is released.

Undercurrent: When the single phase current is lower than or equal to the action value and meets the set action delay time, the single phase undercurrent alarm starts; when the single phase current is greater than the recovered value and meets the delay time, the single phase undercurrent alarm is released.

Note: When undercurrent alarm and zero alarm is enabled, single phase current is equal to 0, the alarm is valid; when undercurrent is enabled and zero alarm is forbidden, when single phase current is equal to 0, the alarm is invalid.

7.5.7.2 Phase current loss alarm

When any current (not all current) is equal to or lower than the action value and meets the delay time, phase A current loss alarm occurs; and when any of the following conditions occurs, the alarm is released:

The three-phase current is greater than the recovered value and meets the delay time

The three-phase current is lower than the phase loss action value.

7.5.7.3 Reverse phase sequence alarm:

The values of action and recovery and delay time are not applicable to the reverse phase sequence alarm. When the phase sequence is not ABC normal phase sequence, an inverse phase sequence alarm is generated.

7.5.7.4 DI alarm

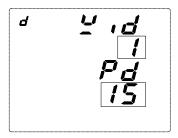
When the DI state changes from the initial state, an alarm is generated.

Examples are as follows:

Set Phase A overcurrent alarm of the first group of alarm enabled.

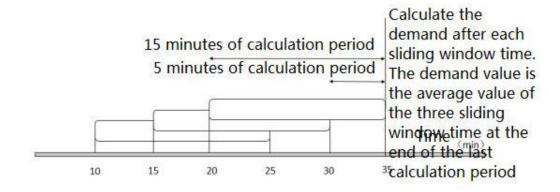
Action value: The action value is a primary value. For example, if the alarm value is set to 5.500A, when Phase A current value exceeds 5.500A, the alarm condition is triggered and the timer starts.

Action delay time: When the alarm condition is triggered, if Phase A current value exceeds 5.500A, an alarm record will be generated after the setted delay time (accurate to the second), Alarm group (alarm 1), alarm type (Phase A overcurrent), alarm time (eg: 2017-5-12 14:15:20) will be recorded. If DO is associated with this alarm, the DO acts (see DO settings).

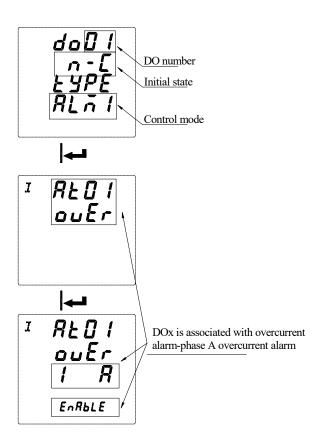

Recovered value: The recovered value is a primary value. For example, if the recovered value is set to 5.400A, after Phase A overcurrent alarm has occurred, when Phase A current value is lower than 5.400A, the released alarm condition is triggered and the timer starts.

Recovered delay time: When the triggered alarm condition is released, if Phase A current value has been lower than 5.400A, the released alarm record will be generated after the setted delay time (accurate to second), and the alarm group (Alarm1), alarm type (Phase A overcurrent), the released alarm time (eg 2017-5-12 14:17:20) will be recorded. If DO is associated with this alarm, the DO returns to its initial state. It can be calculated that the alarm duration is 2 minutes.

Note: The alarm is invalid when both the action value and the recovered value are zero.

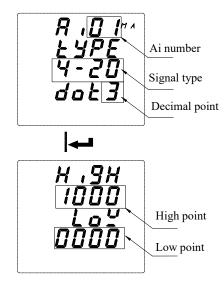

7.5.8 Demand setting

- 1. Press ◆ until you select dMd and press the Enter key.
- 2. Set the window time (Wid) (1, 2, 3, 5) and press the Enter key.
- 3. Set the demand period (Pd) (1-60), which must be set to an integral multiple of the sliding window time and press the Enter key.
- 4. Press the SET button to return.

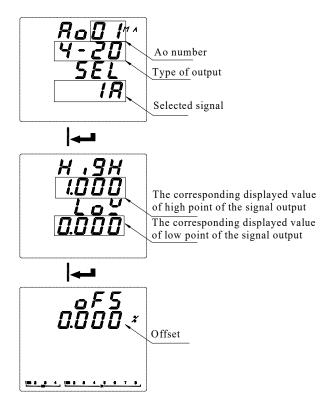

Demand calculation method:

APM series meters use the sliding window method to calculate the demand. In the sliding window calculation cycle, select a calculation period (Period) and a sliding window (Width). The calculation cycle of sliding window must be divided equally. For example, three 5-minute sliding windows (Wid = 5, Pd = 15) are set in a 15 minute calculation cycle. Refresh the current demand at the end of each sliding window. The schematic diagram is as follows:

7.5.9 do settings


- 1. Press ◆ until dio is selected and press the Enter key.
- 2. Press ◆ until do is selected and press the Enter key.
- 3. Press the ◆ keys to select the do number (each main part contains 2 DO outputs and each MD82LOG module adds 2 DO outputs) and press the Enter key.
- 4. Press the ◆ keys to select Normally Open (N-O) or Normally Closed (N-C) and press the Enter key.
- 5. Press ◆ key to select the do output control mode. ALM1 (alarm group 1) and ALM2 (alarm group 2) are the alarm controls, and COM is the communication control. Press the Enter key.
- 6. 1) If you select the alarm (ALM1 or ALM2) control, press ◆ key to select the alarm category, press the Enter key. Select the alarm subclass, press the Enter ke. Select whether to enable, press the Enter key. A DO can select multiple alarms for combined alarms.
 - 2) If communication (COM) control is selected, modify the delay (DLY)time ranged 0-9999, unit 1 second. When it is set to 0, it is a level control. When it is not 0, it is a pulse mode control, and it is disconnected after the delay time is set.
- 7. Press the SET button to return.
- Note: ① When the output control mode of do1 is selected as ALM (ALM1 or ALM2), and is not associated (DISABLE) with any alarm of ALM or associated with all alarms (ENABLE), When any alarm of this group (ALM1 or ALM2) is generated, do1 will act.
- ② When the output control mode of do1 is selected as ALM (ALM1 or ALM2) and associated (ENABLE) with Phase A overcurrent alarm and Phase A overpower alarm and not associated (DISABLE) with the other alarms. After the setting is completed, do1 acts when Phase A overcurrent or Phase A overpower alarm occurs.
 - ③ Before selecting the alarm type associated with do, make sure that the alarm type is enabled in the alarm setting. If it is not enabled, the do does not act when this alarm condition occurs.

7.5.10 Analog input setting (valid with analog module)

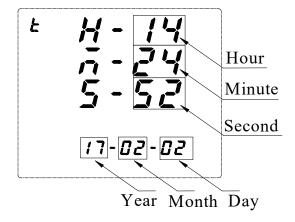

- 1. Press ◆ until Aio is selected and press the Enter key.
- 2. Press ◆ until Ai is selected and press the Enter key.
- 3. Press ◆ until the Ai channel to be modified is selected and press the Enter key.
- 4. Select the input type (make sure the input type is current input or voltage input, current input can choose 0-20mA, 4-20mA, voltage input can choose 0-5V, 1-5V). Press the Enter key.
- 5. Select the decimal point of display and press the Enter key.
- 6. Set the high value of the signal input corresponding to displayed value and press the Enter key.
- 7. Set the low value of the signal input corresponding to displayed value and press the Enter key.
- 8. Press the SET button to return.

For example: Ail is set to 4-20mA input and the decimal point is set to 1. The displayed value of high point of is set to 1000 and the displayed value of low point is set to 0. When the Ail signal input is 20mA, the displayed value is 100.0. When the signal input is 4mA, the displayed value is 0. When the signal input is 12mA, the displayed value is 50.0.

7.5.11 Analog output setting (Valid with analog module)

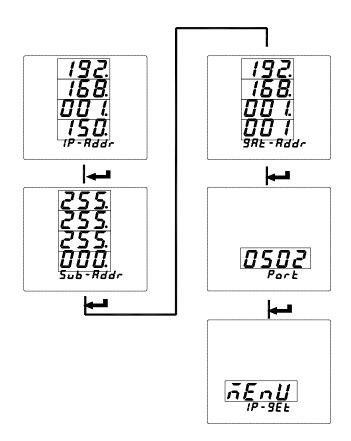
- 1. Press ◆ until Aio is selected and press the Enter key.
- 2. Press ◆ until Ao is selected and press the Enter key.
- 3. Press ◆ until the Ao channel to be modified is selected and press the Enter key.
- 4. Select the output type and press the Enter key.
- 5. Select the output corresponding signal (see Table 3) and press the Enter key.
- 6. Set the actual value of high point of the output corresponding to the signal and press the Enter key.
- 7. Set the actual value of low point of the output corresponding to the signal and press the Enter key.
- 8. Output offset, as a percentage of the reference value of 16mA (current output) or 4V (voltage output) and press the Enter key.
- 9. Press the SET button to return.

Table 3: Output Signals


No.	Symbol	Instruction	No.	Symbol	Instruction
0	IA	Phase A current	13	QA	Phase A reactive power
1	IB	Phase B current	14	QB	Phase B reactive power
2	IC	Phase C current	15	QC	Phase C reactive power
3	UA	Phase A voltage	16	QT	Total reactive power
4	UB	Phase B voltage	17	SA	Phase A apparent power
5	UC	Phase C voltage	18	SB	Phase B apparent power
6	UAB	Phase AB line voltage	19	SC	Phase C apparent power
7	UBC	Phase BC line voltage	20	ST	Total apparent power
8	UCA	Phase CA line voltage	21	PFA	Phase A power factor
9	PA	Phase A active power	22	PFB	Phase B power factor
10	PB	Phase B active power	23	PFC	Phase C power factor
11	PC	Phase C active power	24	PF	Total power factor
12	PT	Total active power	25	F	Frequency

For example:

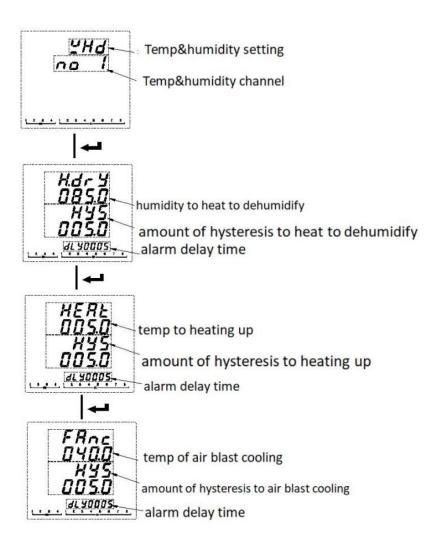
When Ao1 is set to 4-20mA output, the signal is selected as IA (Phase A current), the corresponding signal of output high point is 5.000A, and the corresponding signal of output low point is 0.000A. When Phase A current value is 5A, Ao1 output is 20mA; when Phase A current value is 0A, Ao1 output is 4mA; when Phase A current value is 2.5A, Ao1 output is 12mA. If the actual output is 3.99mA at 0A, then the offset can be set to (4-3.99)/16 = 0.062% to make the zero output be 4mA.


7.5.12 Time setting

- 1. Press ◆ until Time is selected and press the Enter key.
- 2. Set hour (H), press the Enter key.
- 3. Set minute (M), press the Enter key.
- 4. Set second (S), press the Enter key.
- 5. Set year and press the Enter key.
- 6. Set month and press the Enter key.
- 7. Set day and press the Enter key.
- 8. Press the SET button to return.

7.5.13 Network settings

- 1. Press ◆ until NET is selected and press the Enter key.
- 2. Enter the IP address and press the Enter key.
- 3. Enter the Subnet Mask (SUB) address and press the Enter key.
- 4. Enter the gateway address (GAT) and press the Enter key.
- 5. Enter the port address and press the Enter key.
- Set the acquisition mode of IP address, MANU for manual acquisition, DHCP for automatic acquisition, press the Enter key.
- 7. Press the SET button to return.



7.5.14 Setting of temp&humidity controlling

- 1.Press<► > Key until WHD is selected, press < ENTER > key.
- 2.Input temperature and humidity channel to modify, press< ENTER > key.
- 3.Input the humidity to heat to dehumidify, press < ENTER > key.
- 4.Input amount of hysteresis to heat to dehumidify, press < ENTER > key.
- 5.Input alarm delay time of heating to dehumidify,press < ENTER > key.
- 6.Input temp to heating up,press < ENTER > key.
- 7. Input amount of hysteresis to heating up, press \leq ENTER > key.
- 8.Input alarm delay time of heating up,press < ENTER > key.
- 9.Input temp of air blast cooling,press < ENTER > key.
- 10.Input amount of hysteresis to air blast cooling,press < ENTER > key.
- 11.Input alarm delay time of air blast cooling, press < ENTER > key.
- Note: Actual temperature > blowing air cooling value, open the blowing air;

Actual temperature < heating up value, open heating;

Actual humidity > heating dehumidification value, turn on heating.

7.5.15 Recording configuration of TF card

- 1. Insert the TF card into the computer, find the corresponding drive letter and open it.
- 2. Double-click to open APM800Config.ini.
- 3. [INTERVAL] is a configuration area of sampling interval.

Parameter (minute), indicates the recording interval of electrical parameter in minutes and range (1-30).

Energy (hour), indicates the recording interval of energy in hours and range (1-12).

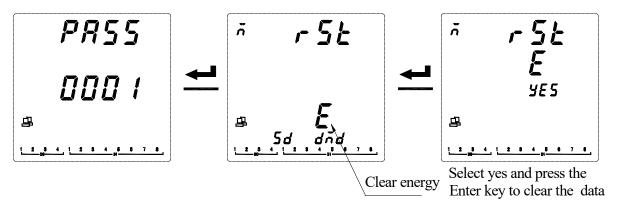
[PARAMETER] is the configuration area to record the electrical parameter. For example: IA=1 means to record Phase A current,

IA=0 means not to record Phase A current.

[ENERGY] is the configuration area to record energy configuration. For example: IMP = 1 means to record absorbed active energy, and IMP = 0 means not to record absorbed active energy.

4. Save after configuration is complete.

7.6 Resetting data


In order to reset the data of APM series meter, please follow the instructions below:

- ①Press ◆ at the measurement screen until Mune is selected and press the ENTER key.
- ②Press ◆ until Rst is selected and press the ENTER key.
- ③Enter your password. The default password is 0001 and the universal password is 0008.
- (4) Select the data to be reset and press the ENTER key. Refer to the following table.

⑤Press left or right key to select yes to clear the corresponding data, and select no to cancel.

Symbol	Instruction
Е	Clear energy
dMd	Clear demand
ALM	Clear alarm records
SOE	Clear event records
MIMX	Clear maximum and minimum
SD	Format TF card

The following is an example of clearing energy:

8. Modbus Communication instructions

8.1 Intruduction

The APM series network power meter communication uses the MODBUS-RTU communication protocol. The MODBUS protocol defines the check code and data sequence in detail. These are the necessary contents for specific data exchange.

The first communication supports 0x03 (read holding register), 0x16 (write multiple registers), 0x01 (read coil status), 0x02 (read input status), 0x05 (write single coil) function code.

If the second communication or Ethernet communication (MODBUS-TCP) is extended, only the 0x03 (read holding register) function code is supported.

8.2 Communication Address Table

Register	Description	unit	Data Type	Parameters
0	Meter address(COMM1)		Int16 (RW)	Range :1-247
				0: 38400
				1: 19200
1	D1(COMM1)		Late (DW)	2: 9600(default)
1	Baud rate(COMM1)		Int16 (RW)	3: 4800
				4: 2400
				5: 1200
				0: None Parity with one stop bit(default)
2	Parity(COMM1)		Luate (DW)	1: None Parity with two stop bits
2			Int16 (RW)	2: Odd Parity with one stop bit
				3: Even Parity with one stop bit
				Lower 7 bit:
2			L (16 (DW)	0:3P3W_2CT,
3	System Type		Int16 (RW)	1:3P4W,
				2:3P3W_3CT

4	Nominal Secondary Current		Int16 (RW)	1A or 5A
5	Nominal Secondary Voltage L-L		Int16 (RW)	100V、110V、400V、690V
6	Nominal Primary Current	1A	Int16 (RW)	0-32760A
7-8	Nominal Primary Voltage L-L	1V	Int32 (RW)	0-1200KV
	Meter address(COMM2)			
				0: 38400
				1: 19200
				2: 9600
10	Baud rate(COMM2,slave)		Int16 (RW)	3: 4800
				4: 2400
				5: 1200
				0: None Parity with one stop bit
				1: None Parity with two stop bits
11	Parity(COMM2,slave)		Int16 (RW)	2: Odd Parity with one stop bit
				3: Even Parity with one stop bit
13	Neutral current secondary side rating		Int16 (RW)	1A or 5A
14	Neutral current primary side rating	1A	Int16 (RW)	1A-32760A
	1 ,			0-9999(APM801 is valid) (When it is 0,
				default value is used, 1A: 8000, 5A: 4000;
15	Pulse constant	100	Int16 (RW)	When it is not 0, pulse constant = register
				value *100)
16	Unbalance algorithm		Int16 (RW)	Unbalance algorithm(0: Rated, 1: Absolute)
18	Profibus address		Int16 (RW)	1-127
20	Year		Int16 (RW)	0-99
21	Month		Int16 (RW)	1-12
22	Day		Int16 (RW)	1-31
23	Hour		Int16 (RW)	0-23
24	Minute		Int16 (RW)	0-59
25	Second		Int16 (RW)	0-59
29	Enable change parameter of Ethernet from RS485 Port		Int16 (RW)	code: 0XABCD
				Sample: 192.168.3.8
30-31	IP Address		Int32 (RW)	ADDR 30:C0A8H
				ADDR 31: 0308H
				Sample: 255.255.255.0
32-33	Subnet Mask		Int32 (RW)	ADDR 32: FFFFH;
				ADDR 33: FF00H
				Sample: 192.168.3.1
34-35	Gateway		Int32 (RW)	ADDR 34: C0A8H;
				ADDR 35: 0301H
36	Port Number		Int16 (RW)	0-9999
37	IP address allocation		Int16 (RW)	0: Manual; 1: Automatic (DHCP)
	The code for Save the parameter of			
38	Ethernet		Int16 (RW)	code: 0XABCD
40	SD Stampa State		Int16 (DO)	0,0x11: No SD Card
40	SD Storage State		Int16 (RO)	0x22: Bad SD Card

	I			0x33: SD work well
				0x44: Full storage
				0x55: Formating
				0x66: Error in Configuration File
41	SD Total capacity	1M	Int16 (RO)	Unit: Megabytes
42	SD Residual capacity	1M	Int16 (RO)	Unit: Megabytes
1.2	55 residual capacity	1111	miro (ito)	Secondary side nominal voltage for
61	Nominal voltage	0.1V	Int16 (RO)	calculating voltage deviation
62	Nominal frequency	0.01Hz	Int16 (RO)	Nominal frequency used to calculate frequency deviation
120	Blast cooling value (Module 1)	0.1°C	Int16 (RW)	0-9999
121	Blast cooling hysteresis	0.1°C	Int16 (RW)	0-9999
122	Blast cooling delay	1s	Int16 (RW)	0-9999
123	Heating up value	0.1°C	Int16 (RW)	0-9999
124	Heating up hysteresis	0.1°C	Int16 (RW)	0-9999
125	Heating up delay	1s	Int16 (RW)	0-9999
126	Heat dehumidification value	0.1%	Int16 (RW)	0-9999
127	Heat dehumidification hysteresis	0.1%	Int16 (RW)	0-9999
128	Hysteresis delay	1s	Int16 (RW)	0-9999
242	Neutral current,	0.001A	Int16 (RO)	Secondary
243	Voltage A-N	0.1	Int16 (RO)	Secondary
244	Voltage B-N	0.1	Int16 (RO)	Secondary
245	Voltage C-N	0.1	Int16 (RO)	Secondary
246	Voltage A-B	0.1	Int16 (RO)	Secondary
247	Voltage B-C	0.1	Int16 (RO)	Secondary
248	Voltage C-A	0.1	Int16 (RO)	Secondary
249	Current, Phase A	0.001	Int16 (RO)	Secondary
250	Current, Phase B	0.001	Int16 (RO)	Secondary
251	Current, Phase C	0.001	Int16 (RO)	Secondary
252	Nominal Frequency	0.01Hz	Int16 (RO)	
253-254	Active Power, Phase A	0.01W	Int32 (RO)	Secondary
255-256	Active Power, Phase B	0.01W	Int32 (RO)	Secondary
257-258	Active Power, Phase C	0.01W	Int32 (RO)	Secondary
259-260	Active Power, Total	0.01W	Int32 (RO)	Secondary
261-262	Reactive Power, Phase A	0.01Var	Int32 (RO)	Secondary
263-264	Reactive Power, Phase B	0.01 Var	Int32 (RO)	Secondary
265-266	Reactive Power, Phase C	0.01 Var	Int32 (RO)	Secondary
267-268	Reactive Power, Total	0.01 Var	Int32 (RO)	Secondary
269-270	Real Power, Phase A	0.01VA	Int32 (RO)	Secondary
271-272	Real Power, Phase B	0.01VA	Int32 (RO)	Secondary
273-274	Real Power, Phase C	0.01VA	Int32 (RO)	Secondary
275-276	Real Power, Total	0.01VA	Int32 (RO)	Secondary
277	Active Power Factor, Phase A	0.001	Int16 (RO)	Secondary
278	Active Power Factor, Phase B	0.001	Int16 (RO)	Secondary
279	Active Power Factor, Phase C	0.001	Int16 (RO)	Secondary
280	Active Power Factor, Total	0.001	Int16 (RO)	Secondary
		1 3.001	1 (10)	J

300-301	Active Energy In (EPI)	1WH	Int32 (RO)	Secondary
302-303	Active Energy Out (EPE)	1WH	Int32 (RO)	Secondary
304-305	Reactive Energy In(EQL)	1WH	Int32 (RO)	Secondary
306-307	Reactive Energy Out (EQC)	1WH	Int32 (RO)	Secondary
1000	Temp1	0.1°C	Int16 (RO)	1st way temp
1001	Temp2	0.1°C	Int16 (RO)	2nd way temp
1002	Temp3	0.1°C	Int16 (RO)	3rd way temp
1003	Temp4	0.1°C	Int16 (RO)	4th way temp
1004	whd_temp	0.1°C	Int16 (RO)	Temperature and humidity sensor temperature
1005	whd_rh	0.1%	Int16 (RO)	Temperature and humidity sensor humidity
1006	Temperature and humidity sensor status		Int16 (RO)	Bit0: high temperature BIT1: low temperature BIT2: high humidity Bit3: Heating BIT4: blast bit7: Sensor status
1007-1021	Corresponding to the second and third module		Int16 (RO)	

Register	Description	Unit	Data Type	Parameters
1100-1101	Current, Phase A	0.001A	Int32 (RO)	Primary
1102-1103	Current, Phase B	0.001A	Int32 (RO)	Primary
1104-1105	Current, Phase C	0.001A	Int32 (RO)	Primary
1106-1107	Current, Neutral	0.001A	Int32 (RO)	Primary
1108-1109	Current, Average	0.001A	Int32 (RO)	Primary
1110	Current Unbalance, Phase A	0.1%	Int16 (RO)	Primary
1111	Current Unbalance, Phase B	0.1%	Int16 (RO)	Primary
1112	Current Unbalance, Phase C	0.1%	Int16 (RO)	Primary
1113	Current Unbalance, Max	0.1%	Int16 (RO)	Primary
1114	Current angle between IA and IB	0.1°	Int16 (RO)	
1115	Current angle between IB and IC	0.1°	Int16 (RO)	
1116	Current angle between IC and IA	0.1°	Int16 (RO)	
1120-1121	Voltage Phase A-N	0.1V	Int32 (RO)	Primary
1122-1123	Voltage Phase B-N	0.1V	Int32 (RO)	Primary
1124-1125	Voltage Phase C-N	0.1V	Int32 (RO)	Primary
1126-1127	Voltage Average L-N	0.1V	Int32 (RO)	Primary
1128-1129	Voltage Phase A-B	0.1V	Int32 (RO)	Primary
1130-1131	Voltage Phase B-C	0.1V	Int32 (RO)	Primary
1132-1133	Voltage Phase C-A	0.1V	Int32 (RO)	Primary
1134-1135	Voltage Average (L-L)	0.1V	Int32 (RO)	Primary
1136	Voltage Unbalance Phase A-N	0.1%	Int16 (RO)	Primary
1137	Voltage Unbalance Phase B-N	0.1%	Int16 (RO)	Primary
1138	Voltage Unbalance Phase C-N	0.1%	Int16 (RO)	Primary
1139	Voltage Unbalance, L-N	0.1%	Int16 (RO)	Primary
1140	Voltage Unbalance, Phase A-B	0.1%	Int16 (RO)	Primary
1141	Voltage Unbalance, Phase B-C	0.1%	Int16 (RO)	Primary
1142	Voltage Unbalance, Phase C-A	0.1%	Int16 (RO)	Primary
1143	Voltage Unbalance,L-L	0.1%	Int16 (RO)	Primary
1144	Voltage angle between UA and UB	0.1°	Int16 (RO)	

1145	Voltage angle between UB and UC	0.1°	Int16 (RO)	
1146	Voltage angle between UC and UA	0.1°	Int16 (RO)	
1150-1151	Active Power, Phase A	0.01W	Float (RO)	Primary
1152-1153	Active Power, Phase B	0.01W	Float (RO)	Primary
1154-1155	Active Power, Phase C	0.01W	Float (RO)	Primary
1156-1157	Active Power, Total	0.01W	Float (RO)	Primary
1130 1137	Tablive I swell, I sui	0.01 **	Float	1111111111
1158-1159	Reactive Power, Phase A	0.01Var	(RO)	Primary
1160-1161	Reactive Power, Phase B	0.01Var	Float (RO)	Primary
1162-1163	Reactive Power, Phase C	0.01Var	Float (RO)	Primary
1164-1165	Reactive Power, Total	0.01Var	Float (RO)	Primary
1166-1167	Real Power, Phase A	0.01VA	Float (RO)	Primary
1168-1169	Real Power, Phase B	0.01VA	Float (RO)	Primary
1170-1171	Real Power, Phase C	0.01VA	Float (RO)	Primary
1172-1173	Real Power, Total	0.01VA	Float (RO)	Primary
1174	Phase Angle between UA and IA	0.1°	Int16 (RO)	
1175	UB and IB phase Angle	0.1°	Int16 (RO)	
1176	Phase Angle between UC and IC	0.1°	Int16 (RO)	
1179	Nominal Frequency	0.01Hz	Int16 (RO)	Same as Address 252
1180	Active Power Factor, Phase A	0.001	Int16 (RO)	Same as Address 277
1181	Active Power Factor, Phase B	0.001	Int16 (RO)	Same as Address 278
1182	Active Power Factor, Phase C	0.001	Int16 (RO)	Same as Address 279
1183	Active Power Factor, Total	0.001	Int16 (RO)	Same as Address 280
1190	voltage crest factor,phase A	0.001	Int16 (RO)	
1191	voltage crest factor,phase B	0.001	Int16 (RO)	
1192	voltage crest factor,phase C	0.001	Int16 (RO)	
4400	Telephone waveform	0.01	I (16 (DO)	
1193	factor,phase A	0.01	Int16 (RO)	
1104	Telephone waveform	0.01	I (16 (DO)	
1194	factor,phase B	0.01	Int16 (RO)	
1105	Telephone waveform	0.01	I416 (DO)	
1195	factor,phase C	0.01	Int16 (RO)	
1196	Phase A current K factor	0.01	Int16 (RO)	
1197	Phase B current K factor	0.01	Int16 (RO)	
1198	Phase C current K factor	0.01	Int16 (RO)	
1200-1201	Current Demand MAX, Phase A	0.001A	Int32 (RO)	Primary
				BIT12~BIT15:Year
	Data and time the Current Demand		Int16 (RO)	BIT8~BIT12:Month
1202-1203	MAX, Phase A			BIT0~BIT7:Day
	1111111 1111111111111111111111111111111		Int16 (RO)	BIT8~BIT12:Hour
			milo (NO)	BIT0~BIT7: Minute
1204-1207	Current Demand MAX, Phase B			Same phase A current
1208-1211	Current Demand MAX, Phase C			Same phase A current
1212-1213	Active Power Demand MAX, Total	0.01W	Float (RO)	Primary

			L (16 (DO)	BIT12~BIT15:Year
1214-1215	Data and time the Active Power		Int16 (RO)	BIT8~BIT12:Month
1214-1215	Demand MAX ,Total			BIT0~BIT7:Day
			Int16 (RO)	BIT8~BIT12:Hour BIT0~BIT7: Minute
1216-1219	Reactive Power Demand MAX, Total	0.01Var	Float (RO)	
1210-1219	Real Power Demand MAX, Total	0.01 Var	Float (RO)	Same phase A current
1220-1223	Real Fower Demand MAA, Total	0.01 VA	rioat (KO)	Same phase A current
1250-1251	Current Demand MAX, Phase A	0.001A	Int32 (RO)	Primary
1252-1253	Current Demand MAX, Phase B	0.001A	Int32 (RO)	Primary
1254-1255	Current Demand MAX, Phase C	0.001A	Int32 (RO)	Primary
1260-1261	Active Power Demand , Total	0.01W	Float (RO)	Primary
1262-1263	Reactive Power Demand , Total	0.01Var	Float (RO)	Primary
1264-1265	Real Power Demand, Total	0.01VA	Float (RO)	Primary
1266-1267	A phase voltage positive sequence	0.1V	Int32 (RO)	Primary
1268-1269	Phase B voltage negative sequence	0.1V	Int32 (RO)	Primary
1270-1271	Phase C voltage zero sequence	0.1V	Int32 (RO)	Primary
1272-1273	A phase current positive sequence	0.001A	Int32 (RO)	Primary
1274-1275	B phase current negative sequence	0.001A	Int32 (RO)	Primary
1276-1277	C phase current zero sequence	0.001A	Int32 (RO)	Primary
1288	Current coefficient		Int16 (RW)	Used to set the alarm value and read the alarm record value. If the current coefficient is -3, the Phase A overcurrent alarm action value (register 1301) is set to 6000, then the actual alarm value is 6000*10^(-3) = 6.000A
1289	Neutral current coefficient		Int16 (RW)	Refer to register 1288
1290	Voltage coefficient		Int16 (RW)	Refer to register 1288
1291	Power coefficient		Int16 (RW)	Refer to register 1288
				When Bit0 is 1, the alarm is enabled, when
	The first group of alarms: Phase A			Bit0 is 0, the alarm is disabled;
1300	overcurrent alarm		Int16 (RW)	When Bit1 is 1, the zero-value alarm is
	Overcurrent atarm			disabled, when Bit1 is 0, the zero-value
				alarm is enabled.
				Primary. Range: 0 ~ 9999. If the current
1301	Alarm action value		Int16 (RW)	coefficient is -3, Phase A overcurrent alarm
				action value is set to 6000, then the actual

				alarm value is 6000*10^(-3) = 6.000A,other situation is similar.
1302	Alarm delay time	1s	Int16 (RW)	Range: 0 ~ 9999.
1303	Alarm recovery value		Int16 (RW)	Primary. Range:0~9999
1304	Delay time of Recovery	1s	Int16 (RW)	Range: 0 ~ 9999.

The first group of other alarm settings: refer to Phase A overcurrent alarm

	The mast group of other diam's settings, refer to Thisse Provolentent diam's								
1305	Phase B overcurrent alarm	1310	Phase C overcurrent alarm	1315	Maximum overcurrent alarm				
1320	Neutral overcurrent alarm	1325	Phase A undercurrent alarm	1330	Phase B undercurrent alarm				
1335	Phase C undercurrent alarm	1340	Minimum undercurrent alarm	1345	Neutral undercurrent alarm				
1350	Maximum current unbalance alarm	1355	Current loss alarm	1360	Phase A overvoltage alarm				
1365	Phase B overvoltage alarm	1370	Phase C overvoltage alarm	1375	Maximum phase overvoltage alarm				
1380	AB line overvoltage alarm	1385	BC line overvoltage alarm	1390	CA line overvoltage alarm				
1395	Maximum line overvoltage alarm	1400	Phase A undervoltage alarm	1405	Phase B undervoltage alarm				
1410	Phase C undervoltage alarm	1415	Minimum phase undervoltage alarm	1420	AB line undervoltage alarm				
1425	BC line undervoltage alarm	1430	CA line undervoltage alarm	1435	Minimum line undervoltage alarm				
1440	Maximum phase voltage unbalance alarm	1445	Maximum line voltage unbalance alarm	1450	Line voltage loss alarm				
1455	Total active overpower alarm	1460	Total reactive overpower alarm	1465	Total apparent overpower alarm				
1470	Total active underpower alarm	1475	Total reactive underpower alarm	1480	Total apparent underpower alarm				
1485	Over power factor alarm	1490	Under power factor alarm	1495	Over frequency alarm				
1500	Under frequency alarm	1505	Over total harmonic of Phase A current alarm	1510	Over total harmonic of Phase B current alarm				
1515	Over total harmonic of Phase C current alarm	1520	Over total harmonic of Phase A voltage alarm	1525	Over total harmonic of Phase B voltage alarm				
1530	Over total harmonic of Phase C voltage alarm	1535	Over total even harmonic of Phase A current alarm	1540	Over total even harmonic of Phase B current alarm				
1545	Over total even harmonic of Phase C current alarm	1550	Over total even harmonic of Phase A voltage alarm	1555	Over total even harmonic of Phase B voltage alarm				
1560	Over total even harmonic of Phase C voltage alarm	1565	Over total odd harmonic of Phase A current alarm	1570	Over total odd harmonic of Phase B current alarm				
1575	Over total odd harmonic of Phase C current alarm	1580	Over total odd harmonic of Phase A voltage alarm	1585	Over total odd harmonic of Phase B voltage alarm				
1590	Over total odd harmonic of Phase C voltage alarm	1595	Over total demand of active power alarm	1600	Under total demand of active power alarm				
1605	Reverse phase sequence alarm	1610	DI1 digital input alarm		DI2 digital input alarm				
1620	DI3 digital input alarm	1625	DI4 digital input alarm	1630	1st temp alarm				
1635	2 nd temp alarm	1640	3 rd temp alarm	1645	4 th temp alarm				

The second group of alarm settings: refer to Phase A overcurrent alarm

1750	Phase A overcurrent alarm	1755	Phase B overcurrent alarm	1760	Phase C overcurrent alarm
1765	Maximum overcurrent alarm	1770	Neutral overcurrent alarm	1775	Phase A undercurrent alarm
1780	Phase B undercurrent alarm	1785	Phase C undercurrent alarm	1790	Minimum undercurrent alarm

Balan Bala	1795	Neutral undercurrent alarm	1800	Maximum current unbalance	1805	Current loss alarm
Maximum phase overvoltage alarm 1830 AB line overvoltage alarm 1835 BC line overvoltage alarm 1845 Maximum line overvoltage alarm 1850 Phase A undervoltage alarm 1860 Phase B undervoltage alarm 1860 Phase C undervoltage alarm 1880 CA line undervoltage alarm 1870 AB line undervoltage alarm 1875 BC line undervoltage alarm 1880 CA line undervoltage alarm 1880 Maximum phase undervoltage alarm 1880 Maximum line voltage unbalance alarm 1890 Maximum phase voltage unbalance alarm 1990 Total active overpower alarm 1991 Total reactive overpower alarm 1992 Total apparent overpower alarm 1935 Over power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Over total harmonic of Phase B current alarm 1960 Over total harmonic of Phase B voltage alarm 1990 Over total harmonic of Phase B voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 2000 Over total odd harmonic of Phase C voltage alarm 2000 Over total odd harmonic of Phase C voltage alarm 2000 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total	1810	Phase Δ overvoltage alarm	1815		1820	
1840 CA line overvoltage alarm 1845 alarm 1850 Phase A undervoltage alarm 1860 Phase C undervoltage alarm 1865 Minimum phase undervoltage alarm 1870 AB line undervoltage alarm 1875 BC line undervoltage alarm 1880 CA line undervoltage alarm 1885 Minimum line undervoltage alarm 1890 Maximum phase voltage unbalance alarm 1890 Uniter voltage loss alarm 1905 Total active overpower alarm 1910 Total apparent overpower alarm 1921 Total apparent overpower alarm 1922 Total active underpower alarm 1923 Over frequency alarm 1935 Over power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1940 Over total harmonic of Phase A current alarm 1950 Under frequency alarm 1955 Under frequency alarm 1955 Over total harmonic of Phase A voltage alarm 1960 Over total harmonic of Phase B voltage alarm 1960 Over total harmonic of Phase B voltage alarm 1960 Over total even harmonic of Phase C voltage alarm 1960 Over total even harmonic of Phase C voltage alarm 1960 Over total even harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 1960 Over total odd harmonic of Phase C voltage alarm 19		Maximum phase overvoltage		-		-
1855 Phase B undervoltage alarm 1860 Phase C undervoltage alarm 1865 alarm 1870 AB line undervoltage alarm 1875 BC line undervoltage alarm 1880 CA line undervoltage alarm 1890 Ca line undervoltage undervoltage undervoltage undervoltage alarm 1890 Cover total active underpower alarm 1990 Cover total and parent underpower alarm 1990 Cover total harmonic of Phase B current alarm 1995 Cover total harmonic of Phase C voltage alarm 1995 Cover total even harmonic of Phase C voltage alarm 2000 Cover total even harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total odd harmonic of Phase C voltage alarm 2015 Cover total demand of active power alarm 2016 Cover total demand of active power alarm 2010 Cover total demand of active power alarm 2010 Cover total demand of active power alar	1840	CA line overvoltage alarm	1845	_	1850	Phase A undervoltage alarm
Maximum line undervoltage alarm 1890 Maximum phase voltage unbalance alarm 1895 Ialarm 1895 Ialarm 1890 Ialarm 1890 Ialarm 1890 Ialarm 1890 Ialarm 1890 Ialarm 1890 Ialarm 1910 Iala	1855	Phase B undervoltage alarm	1860	Phase C undervoltage alarm	1865	
1885 Minimum line undervoltage alarm 1890 unbalance alarm 1895 alarm 1900 Line voltage loss alarm 1905 Total active overpower alarm 1910 Total reactive overpower alarm 1915 Total apparent overpower alarm 1920 Total active underpower alarm 1925 Total reactive underpower alarm 1930 Total apparent underpower alarm 1935 Over power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1940 Over total harmonic of Phase A current alarm 1950 Under frequency alarm 1955 Over total harmonic of Phase A current alarm 1960 Over total harmonic of Phase B current alarm 1960 Over total harmonic of Phase B voltage alarm 1980 Over total harmonic of Phase C voltage alarm 1980 Over total even harmonic of Phase B current alarm 1995 Over total even harmonic of Phase C voltage alarm 2000 Over total even harmonic of Phase C voltage alarm 2010 Over total even harmonic of Phase C voltage alarm 2015 Over total odd harmonic of Phase C voltage alarm 2015 Over total odd harmonic of Phase C voltage alarm 2015 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2017 Over total odd harmonic of Phase C voltage alarm 2018 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of	1870	AB line undervoltage alarm	1875	BC line undervoltage alarm	1880	CA line undervoltage alarm
1915 Total apparent overpower alarm 1920 Total active underpower alarm 1921 Total apparent underpower alarm 1930 Total apparent underpower alarm 1935 Over power factor alarm 1940 Under power factor alarm 1940 Under power factor alarm 1945 Over total harmonic of Phase A current alarm 1950 Under frequency alarm 1955 Over total harmonic of Phase A current alarm 1950 Over total harmonic of Phase C current alarm 1950 Over total harmonic of Phase C current alarm 1950 Over total harmonic of Phase C current alarm 1950 Over total harmonic of Phase C current alarm 1950 Over total harmonic of Phase C voltage alarm 1950 Over total harmonic of Phase C voltage alarm 1950 Over total even harmonic of Phase C voltage alarm 1950 Over total even harmonic of Phase C voltage alarm 1950 Over total even harmonic of Phase C voltage alarm 1950 Over total even harmonic of Phase C voltage alarm 2000 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2015 Over total odd harmonic of Phase C voltage alarm 2015 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total odd harmonic of Phase C voltage alarm 2016 Over total demand of active power alarm 2016 Over total demand of act	1885	Minimum line undervoltage alarm	1890		1895	
Total apparent underpower alarm 1935 Over power factor alarm 1940 Under power factor alarm 1941 Over total harmonic of Phase A current alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Over total harmonic of Phase A current alarm 1960 Over total harmonic of Phase B current alarm 1970 Over total harmonic of Phase B voltage alarm 1970 Over total even harmonic of Phase B voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 2005 Over total even harmonic of Phase C voltage alarm 2006 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2021 Over total odd harmonic of Phase B current alarm 2022 Over total odd harmonic of Phase B current alarm 2023 Over total odd harmonic of Phase B current alarm 2030 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2050 Diver total odd harmonic of Phase B current alarm 2060 Diver total odd harmonic of Phase B current alarm 2070 Over total odd harmonic of Phase B current alarm 2080 Diver total odd harmonic of Phase B current alarm 2080 Diver total odd harmonic of Phase B current alarm 2080 Diver total odd harmonic of Phase C voltage alarm 2080 Diver total odd harmonic of Diver total odd h	1900	Line voltage loss alarm	1905	Total active overpower alarm	1910	Total reactive overpower alarm
1945 Over frequency alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Under frequency alarm 1950 Over total harmonic of Phase A current alarm 1960 current alarm 1960 Over total harmonic of Phase B current alarm 1975 Over total harmonic of Phase B voltage alarm 1975 Over total even harmonic of Phase B voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 2005 Over total even harmonic of Phase B voltage alarm 2006 Over total odd harmonic of Phase B current alarm 2010 Over total even harmonic of Phase B voltage alarm 2020 Over total odd harmonic of Phase B current alarm 2021 Over total odd harmonic of Phase B current alarm 2022 Over total odd harmonic of Phase B current alarm 2023 Over total odd harmonic of Phase B current alarm 2035 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2050 Under total demand of active power alarm 2050 D12 digital input alarm 2070 D13 digital input alarm 2080 Ist way temp alarm 2080 Ist way temp alarm 2080 Over total harmonic of Phase C current alarm 2080 Ist way temp alarm 2080 Over total harmonic of Phase C current alarm 2080 Over total harmonic of Phase C current alarm 2080 Ist way temp alarm 2080 Over total harmonic of Phase C current alarm 2080 Over total harmonic of Phase C current alarm 2080 Over total harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Phase C voltage alarm 2080 Over total odd harmonic of Ph	1915	Total apparent overpower alarm	1920	Total active underpower alarm	1925	Total reactive underpower alarm
1945 Over frequency alarm 1950 Under frequency alarm 1955 current alarm 1960 Over total harmonic of Phase B current alarm 1965 Current alarm 1965 Over total harmonic of Phase C current alarm 1970 Over total harmonic of Phase A voltage alarm 1980 Over total harmonic of Phase C voltage alarm 1980 Over total harmonic of Phase C voltage alarm 1980 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase B current alarm 1995 Over total even harmonic of Phase C voltage alarm 2000 Over total even harmonic of Phase C voltage alarm 2010 Over total even harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2010 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phase C voltage alarm 2011 Over total odd harmonic of Phas	1930	Total apparent underpower alarm	1935	Over power factor alarm	1940	Under power factor alarm
1960 current alarm 1970 voltage alarm 1970 voltage alarm 1975 Over total harmonic of Phase B voltage alarm 1980 Over total harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 1990 Over total even harmonic of Phase C voltage alarm 2005 Phase B current alarm 2006 Over total even harmonic of Phase B voltage alarm 2007 Over total even harmonic of Phase B voltage alarm 2008 Over total odd harmonic of Phase B current alarm 2010 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2030 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase B current alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase A voltage alarm 2040 Over total odd harmonic of Phase	1945	Over frequency alarm	1950	Under frequency alarm	1955	
1975 voltage alarm 1980 voltage alarm 1980 voltage alarm 1985 A current alarm 1986 Over total even harmonic of Phase B current alarm 2005 Phase B current alarm 2006 Over total even harmonic of Phase B voltage alarm 2007 Over total even harmonic of Phase C voltage alarm 2008 Over total odd harmonic of Phase B current alarm 2010 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B current alarm 2020 Over total odd harmonic of Phase B voltage alarm 2030 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2046 Over total odd harmonic of Phase B voltage alarm 2047 Over total odd harmonic of Phase B voltage alarm 2048 Over total odd harmonic of Phase B voltage alarm 2049 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2045 Over total odd harmonic of Phase B voltage alarm 2046 Over total odd harmonic of Phase B voltage alarm 2047 Over total odd harmonic of Phase B voltage alarm 2048 Over total odd harmonic of Phase B voltage alarm 2049 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Over total odd harmonic of Phase B voltage alarm 2040 Ove	1960		1965		1970	
Phase B current alarm Over total even harmonic of Phase B current alarm Over total odd harmoni	1975		1980		1985	
Phase B voltage alarm Over total odd harmonic of Phase B current alarm Over total odd harmonic of Phase B current alarm Over total odd harmonic of Phase B current alarm Over total odd harmonic of Phase B current alarm Over total odd harmonic of Phase B current alarm Over total odd harmonic of Phase B voltage alarm	1990		1995		2000	
2020 B current alarm 2025 Phase C current alarm 2030 A voltage alarm	2005		2010		2015	
2035 B voltage alarm 2040 Phase C voltage alarm 2045 alarm 2050 Under total demand of active power alarm 2050 DI2 digital input alarm 2065 DI2 digital input alarm 2070 DI3 digital input alarm 2080 1st way temp alarm 2080 2090 3rd way temp alarm	2020		2025		2030	
2050 power alarm 2055 Reverse phase sequence alarm 2060 DI1 digital input alarm 2065 DI2 digital input alarm 2070 DI3 digital input alarm 2075 DI4 digital input alarm 2080 1st way temp alarm 2085 2nd way temp alarm 2090 3rd way temp alarm	2035		2040		2045	•
2080 1 st way temp alarm 2085 2 nd way temp alarm 2090 3 rd way temp alarm	2050		2055	Reverse phase sequence alarm	2060	DI1 digital input alarm
	2065	DI2 digital input alarm	2070	DI3 digital input alarm	2075	DI4 digital input alarm
2095 4 th way temp alarm	2080	1 st way temp alarm	2085	2 nd way temp alarm	2090	3 rd way temp alarm
	2000					

Note: The action value of unbalance is the register value *0.1%, the action value of power factor is the register value *0.001, the action value of harmonic alarm is the register value *0.01%, and the action value of frequency alarm is the register value *0.01Hz.

Register (WORD)	Desc	cription	Unit	Data Type	Note
2200				UInt16 (RO)	When Bit15 is 1, it means DI. When it is 0, it
					means DO.
					When Bit14 is 1, it means ON. When it is 0, it
	F44 1				means OFF.
	Event record 1				Low byte indicates DI/DO number .
2201		Year Month		UInt16 (RO)	High byte: Year; Low byte: Month
2202		Day, Hour		UInt16 (RO)	High byte: Day ; Low byte: Hour
2203		Minute, second		UInt16 (RO)	High byte: Year; Low byte: Month

Other event records: Refer to event record 1

2204	Event record 2	2208	Event record 3	2212	Event record 4	2216	Event record 5	2220	Event record 6
2224	Event record 7	2228	Event record 8	2232	Event record 9	2236	Event record 10	2240	Event record 11
2244	Event record 12	2248	Event record 13	2252	Event record 14	2256	Event record 15	2260	Event record 16

Note: To read the most recent 128 event records, you can read the register 20000-20513, refer to the format of register 2200-2203.

Register (WORD)	Name	Resolution	Data(Read and write attribute)	Remarks
2280			UInt16 (RO)	Bit0-bit15 (the lowest digit is Bit0) corresponds to alarm number 0-15.For example: BIT0 corresponds to A phase overcurrent alarm, and so on
2281	1ST group		UInt16 (RO)	Corresponding alarm number 16-31
2282	alarm state		UInt16 (RO)	Corresponding alarm number 32-47
2283			UInt16 (RO)	Corresponding alarm number48-63
2284			UInt16 (RO)	Corresponding alarm number64-79
2285			UInt16 (RO)	Corresponding alarm number80-95
2286-2291	2nd group			Same with 1ST group alarm state
	alarm state			

Register (WORD)	Des	cription	Unit	Data Type	Note
2300		Alarm type		UInt16 (RO)	High byte: Alarm group; Low byte: Alarm type (refer to 7.4 to view alarms - Communication number of alarm classification description)
2301	Recent alarm	Year Month		UInt16 (RO)	High byte: Year; Low byte: Month
2302	record 1	Day, Hour		UInt16 (RO)	High byte: Day ; Low byte: Hour
2303		Minute, second		UInt16 (RO)	High byte:Year; Low byte: Month
2304		Alarm value		UInt16 (RO)	Primary
2305		Alarm status		UInt16 (RO)	1: Alarm acts 0: Alarm released

Other recent alarm records: Refer to recent alarm record 1

2306	Alarm record 2	2312	Alarm record 3	2318	Alarm record 4	2324	Alarm record 5	2330	Alarm record 6
2336	Alarm record 7	2342	Alarm record 8	2348	Alarm record 9	2354	Alarm record 10	2360	Alarm record 11
2366	Alarm record 12	2372	Alarm record 13	2378	Alarm record 14	2384	Alarm record 15	2390	Alarm record 16

Classification of alarm records (16 for each type of alarm, polling display, latest record covers the earliest record automatically): Refer to recent alarm record 1 for data format.

10000	Phase A overcurrent alarm (16 in total, the same below)	10096	Phase B overcurrent alarm	10192	Phase C overcurrent alarm
10288	Maximum overcurrent alarm	10384	Neutral overcurrent alarm	10480	Phase A undercurrent alarm
10576	Phase B undercurrent alarm	10672	Phase C undercurrent alarm	10768	Minimum undercurrent alarm
10864	Neutral undercurrent alarm	10960	Maximum current unbalance alarm	11056	Current loss alarm
11152	Phase A overvoltage alarm	11248	Phase B overvoltage alarm	11344	Phase C overvoltage alarm
11440	Maximum phase overvoltage alarm	11536	AB line overvoltage alarm	11632	BC line overvoltage alarm
11728	CA line overvoltage alarm	11824	Maximum line overvoltage alarm	11920	Phase A undervoltage alarm

12016	Phase B undervoltage alarm	12112	Phase C undervoltage alarm	12208	Minimum phase undervoltage
12304	AB line undervoltage alarm	12400	BC line undervoltage alarm	12496	CA line undervoltage alarm
12592	Minimum line undervoltage alarm	12688	Maximum phase voltage unbalance alarm	12784	Maximum line voltage unbalance alarm
12880	Line voltage loss alarm	12976	Total active overpower alarm	13072	Total reactive overpower alarm
13168	Total apparent overpower alarm	13264	Total active underpower alarm	13360	Total reactive underpower alarm
13456	Total apparent underpower alarm	13552	Over power factor alarm	13648	Under power factor alarm
13744	Over frequency alarm	13840	Under frequency alarm	13936	Over total harmonic of Phase A current alarm
14032	Over total harmonic of Phase B current alarm	14128	Over total harmonic of Phase C current alarm	14224	Over total harmonic of Phase A voltage alarm
14320	Over total harmonic of Phase B voltage alarm	14416	Over total harmonic of Phase C voltage alarm	14512	Over total even harmonic of Phase A current alarm
14608	Over total even harmonic of Phase B current alarm	14704	Over total even harmonic of Phase C current alarm	14800	Over total even harmonic of Phase A voltage alarm
14896	Over total even harmonic of Phase B voltage alarm	14992	Over total even harmonic of Phase C voltage alarm	15088	Over total odd harmonic of Phase A current alarm
15184	Over total odd harmonic of Phase B current alarm	15280	Over total odd harmonic of Phase C current alarm	15376	Over total odd harmonic of Phase A voltage alarm
15472	Over total odd harmonic of Phase B voltage alarm	15568	Over total odd harmonic of Phase C voltage alarm	15664	Over total demand of active power alarm
15760	Under total demand of active power alarm	15856	Reverse phase sequence alarm	15952	DI1 digital input alarm
16048	DI2 digital input alarm	16144	DI3 digital input alarm	16240	DI4 digital input alarm
16336	1st way temp alarm	16432	2 nd way temp alarm	16528	3 rd way temp alarm
16624	4 th way temp alarm				

Register (WORD)	Description	Unit	Data Type	Note
2500	Function selection of relay 1		UInt16 (RW)	0: Remote control; 1: First group alarm; 2: Second group alarm
2501-2531	Function selection of relay 2-32			Same as function selection of relay 1
2532	Output pulse width of relay 1 (effective by remote control)	1s	Int16 (RW)	When the delay time 0, it is a level trigger mode; when it is greater than 0, it is a pulse trigger mode.
2533-2563	Output pulse width of relay 2-32 (effective by remote control)			Same as output pulse width of relay 1
2564-2569	Reserve			
2570-2571	Initial state of switch input		Int32 (RW)	Bits0:DI1, and so on, Bits31:DI32; 1: Initial state is ON; 0: Initial state is OFF
2572-2573	Initial state of switch output		Int32 (RW)	Bits0:DO1, and so on, Bits31:DO32; 1: Initial state is ON; 0: Initial state is OFF
2574-2579	Reserve			
2580-2581	Current status of switch input		Int32 (RO)	Bits0:DI1, and so on, Bits31:DI32; 1: Initial state is ON; 0: Initial state is OFF

2582-2583	Current status of switch output	Int32 (RW)	Bits0:DO1, and so on, Bits31:DO32; 1: Initial state is ON; 0: Initial state is OFF
2584-2589	Reserve		
2590-2601	Associated alarm configuration of relay 1	Int32(RW)*6	See 2.9 DO settings in the instructions

Associated alarm configuration of other relays: Refer to associated alarm configuration of relay 1.

2602 relay 2 2638 Associated alarm configuration of relay 5 2650 Associated alarm configuration of relay 6 2674 Associated alarm configuration of relay 8 2674 Associated alarm configuration of relay 9 2675 Associated alarm configuration of relay 11 2770 Associated alarm configuration of relay 11 2770 Associated alarm configuration of relay 12 2770 Associated alarm configuration of relay 14 2770 Associated alarm configuration of relay 12 2780 Associated alarm configuration of relay 17 2781 Associated alarm configuration of relay 17 2881 Associated alarm configuration of relay 17 2882 Associated alarm configuration of relay 18 2883 Associated alarm configuration of relay 20 2884 Associated alarm configuration of relay 20 2886 Associated alarm configuration of relay 21 2886 Associated alarm configuration of relay 24 2880 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 28		8		,		
Associated alarm configuration of relay 2 2638	2602	Associated alarm configuration of	2614	Associated alarm configuration of	2626	Associated alarm configuration of
relay 5 relay 5 relay 6 relay 6 Associated alarm configuration of relay 8 2686 2686 2686 Associated alarm configuration of relay 9 2710 Associated alarm configuration of relay 10 2710 Associated alarm configuration of relay 11 2746 Associated alarm configuration of relay 14 2758 Associated alarm configuration of relay 17 2782 Associated alarm configuration of relay 17 Associated alarm configuration of relay 18 Associated alarm configuration of relay 18 Associated alarm configuration of relay 18 Associated alarm configuration of relay 20 2854 Associated alarm configuration of relay 21 Associated alarm configuration of relay 24 Associated alarm configuration of relay 25 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2002	relay 2	2011	relay 3	2020	relay 4
relay 5 2674 Associated alarm configuration of relay 8 2686 Associated alarm configuration of relay 9 2710 Associated alarm configuration of relay 11 2746 Associated alarm configuration of relay 14 2782 Associated alarm configuration of relay 17 2782 Associated alarm configuration of relay 17 2818 Associated alarm configuration of relay 20 2828 Associated alarm configuration of relay 20 2830 Associated alarm configuration of relay 21 2840 Associated alarm configuration of relay 21 2854 Associated alarm configuration of relay 23 2866 Associated alarm configuration of relay 24 2878 Associated alarm configuration of relay 24 2880 Associated alarm configuration of relay 24 2890 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2629	Associated alarm configuration of	2650	Associated alarm configuration of	2662	Associated alarm configuration of
2674 relay 8 2710 Associated alarm configuration of relay 11 2721 Associated alarm configuration of relay 12 2734 Associated alarm configuration of relay 14 2738 Associated alarm configuration of relay 15 2739 Associated alarm configuration of relay 16 2730 Associated alarm configuration of relay 17 2730 Associated alarm configuration of relay 18 2730 Associated alarm configuration of relay 18 2730 Associated alarm configuration of relay 19 2810 Associated alarm configuration of relay 20 2820 Associated alarm configuration of relay 21 2830 Associated alarm configuration of relay 21 2840 Associated alarm configuration of relay 22 2850 Associated alarm configuration of relay 24 2870 Associated alarm configuration of relay 27 2870 Associated alarm configuration of relay 27 2880 Associated alarm configuration of relay 26 2890 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2038	relay 5	2030	relay 6	2002	relay 7
relay 8 2710 Associated alarm configuration of relay 11 2721 Associated alarm configuration of relay 12 2734 Associated alarm configuration of relay 13 2746 Associated alarm configuration of relay 14 2758 Associated alarm configuration of relay 15 2782 Associated alarm configuration of relay 17 2782 Associated alarm configuration of relay 17 2782 Associated alarm configuration of relay 18 Associated alarm configuration of relay 18 Associated alarm configuration of relay 19 2818 Associated alarm configuration of relay 20 2820 Associated alarm configuration of relay 21 2830 Associated alarm configuration of relay 21 2842 Associated alarm configuration of relay 22 Associated alarm configuration of relay 24 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2674	Associated alarm configuration of	2606	Associated alarm configuration of	2600	Associated alarm configuration of
relay 11 2722 relay 12 2734 relay 13 2746 Associated alarm configuration of relay 14 2758 Associated alarm configuration of relay 15 2758 Associated alarm configuration of relay 15 2750 Associated alarm configuration of relay 16 2770 relay 16 2770 relay 16 2770 Associated alarm configuration of relay 16 2770 relay 16 2770 relay 16 2770 Associated alarm configuration of relay 16 2770 relay 16 2770 Associated alarm configuration of relay 16 2770 relay 16 2770 Associated alarm configuration of relay 19 2810 Associated alarm configuration of relay 21 2810 Associated alarm configuration of relay 21 2820 Associated alarm configuration of relay 21 2830 Associated alarm configuration of relay 24 2842 Associated alarm configuration of relay 25 2870 Associated alarm configuration of relay 27 2870 Associated alarm configuration of relay 27 2870 Associated alarm configuration of relay 27 2870 Associated alarm configuration of relay 28 2870 Associated alarm configuration of relay 29 Associated alarm configuration of relay 27 2870 Associated alarm configuration of relay 21 2870 Associated alarm configuration of relay 21 Associated alarm configuration of relay 21 2870 Associated alarm configuration of relay 21	26/4	relay 8	2686	relay 9	2698	relay 10
relay 11 2746 Associated alarm configuration of relay 14 2758 Associated alarm configuration of relay 15 2782 Associated alarm configuration of relay 17 2784 Associated alarm configuration of relay 17 2785 Associated alarm configuration of relay 18 2786 Associated alarm configuration of relay 18 2787 Associated alarm configuration of relay 18 2788 Associated alarm configuration of relay 20 2880 Associated alarm configuration of relay 21 2884 Associated alarm configuration of relay 23 2886 Associated alarm configuration of relay 24 2886 Associated alarm configuration of relay 24 2888 Associated alarm configuration of relay 25 2880 Associated alarm configuration of relay 26 2880 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2710	Associated alarm configuration of	2722	Associated alarm configuration of	2724	Associated alarm configuration of
relay 14 2782 Associated alarm configuration of relay 17 2818 Associated alarm configuration of relay 20 2854 Associated alarm configuration of relay 23 2866 Associated alarm configuration of relay 24 2876 Associated alarm configuration of relay 24 2877 relay 16 2886 Associated alarm configuration of relay 18 Associated alarm configuration of relay 21 Associated alarm configuration of relay 21 Associated alarm configuration of relay 24 Associated alarm configuration of relay 25 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 29 Associated alarm configuration of relay 27 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2/10	relay 11	2122	relay 12	2/34	relay 13
relay 14 Associated alarm configuration of relay 17 Associated alarm configuration of relay 18 Associated alarm configuration of relay 18 Associated alarm configuration of relay 20 Associated alarm configuration of relay 21 Associated alarm configuration of relay 21 Associated alarm configuration of relay 21 Associated alarm configuration of relay 24 Associated alarm configuration of relay 24 Associated alarm configuration of relay 24 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 29 Associated alarm configuration of relay 27 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2746	Associated alarm configuration of	2750	Associated alarm configuration of	2770	Associated alarm configuration of
relay 17 2818 Associated alarm configuration of relay 20 2854 Associated alarm configuration of relay 23 2866 Relay 21 2879 Associated alarm configuration of relay 24 2870 Associated alarm configuration of relay 24 2870 Associated alarm configuration of relay 24 2870 Associated alarm configuration of relay 26 2870 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30	2/40	relay 14	2/38	relay 15	2770	relay 16
relay 17 relay 18 relay 19 Associated alarm configuration of relay 20 Associated alarm configuration of relay 21 Associated alarm configuration of relay 23 Associated alarm configuration of relay 24 Associated alarm configuration of relay 24 Associated alarm configuration of relay 24 Associated alarm configuration of relay 25 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2792	Associated alarm configuration of	2704	Associated alarm configuration of	2006	Associated alarm configuration of
2818 relay 20 2830 relay 21 Associated alarm configuration of relay 21 2854 Associated alarm configuration of relay 23 Associated alarm configuration of relay 24 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2/62	relay 17	2/94	relay 18	2800	relay 19
relay 20 Relay 21 Associated alarm configuration of relay 23 Associated alarm configuration of relay 24 Associated alarm configuration of relay 24 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2010	Associated alarm configuration of	2020	Associated alarm configuration of	2042	Associated alarm configuration of
2854 relay 23 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2010	relay 20	2030	relay 21	2042	relay 22
relay 23 relay 24 relay 25 Associated alarm configuration of relay 26 Associated alarm configuration of relay 27 Associated alarm configuration of relay 27 Associated alarm configuration of relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2054	Associated alarm configuration of	2066	Associated alarm configuration of	2070	Associated alarm configuration of
relay 26 Associated alarm configuration of relay 29 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 Associated alarm configuration of relay 31	2854	relay 23	2866	relay 24	28/8	relay 25
relay 26 relay 27 relay 28 Associated alarm configuration of relay 29 Associated alarm configuration of relay 30 relay 31 Associated alarm configuration of relay 31	2000	Associated alarm configuration of	2002	Associated alarm configuration of	2014	Associated alarm configuration of
2926 relay 29 relay 30 2950 relay 31 Associated alarm configuration of	2890	relay 26	2902	relay 27	2914	relay 28
relay 29 relay 30 relay 31 Associated alarm configuration of	2026	Associated alarm configuration of	2020	Associated alarm configuration of	2050	Associated alarm configuration of
Associated alarm configuration of	2926	relay 29	2938	relay 30	2950	relay 31
2962	20.62	Associated alarm configuration of				
relay 32	2962	relay 32				

Register (WORD)	Description		Unit	Data Type	Note
3000-3001	Positive active	energy(IMP)	1Wh	Float (RO)	Primary energy
3002-3003	Reverse active	energy (EXP)	1Wh	Float (RO)	Primary energy
3004-3005	Inductive react	tive energy (EQL)	1 varh	Float (RO)	Primary energy
3006-3007	Capacitive rea	ctive energy (EQC)	1 varh	Float (RO)	Primary energy
3500-3501		Maximum	0.001A	Int32 (RO)	Primary
3502	Maximum of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3503	Phase A current in	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3504	this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3505-3509	Maximum of Phase B current in this month				Same as maximum of Phase A current in this month
3510-3514	Maximum of	Phase C current in			Same as maximum of Phase A current in this

	this month				month
	Maximum of	neutral current in			Same as maximum of Phase A current in this
3515-3519	this month				month
3520-3524	Maximum of	average			Same as maximum of Phase A current in this
3320-3324	current in this	month			month
3525-3526		Maximum	0.1V	Int32 (RO)	Primary
3527	Maximum of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3528	Phase A voltage in	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3529	this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3530-3534	Maximum of this month	Phase B voltage in			Same as maximum of Phase A current in this month
3535-3539	Maximum of this month	Phase C voltage in			Same as maximum of Phase A current in this month
3540-3544	Maximum of phase voltage	_			Same as maximum of Phase A current in this month
3545-3549	Maximum of this month	AB line voltage in			Same as maximum of Phase A current in this month
3550-3554	Maximum of this month	BC line voltage in			Same as maximum of Phase A current in this month
3555-3559	Maximum of this month	CA line voltage in			Same as maximum of Phase A current in this month
3560-3564	Maximum of a	average line voltage			Same as maximum of Phase A current in this month
3565-3566		Maximum	0.01W	Float (RO)	Primary
3567	Maximum of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3568	Phase A active power	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3569	in this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3570-3574	Maximum of power in this r	Phase B active month			Same as maximum of Phase A active power in this month
3575-3579	Maximum of power in this r	Phase C active			Same as maximum of Phase A active power in this month
3580-3584	Maximum of total phase active power in this month				Same as maximum of Phase A active power in this month
3585-3586	Maximum of	Maximum	0.01Var	Float (RO)	Primary
3587	Phase A reactive	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3588	power in this month	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour

3589		Minute and second of		Int16 (RO)	High byte: Minute; Low byte: Second
		occurrence			
3590-3594	Maximum of power in this r	Phase B reactive			Same as maximum of Phase A reactive power in this month
3595-3599	Maximum of power in this r	Phase C reactive			Same as maximum of Phase A reactive power in this month
3600-3604	Maximum of in this month	total reactive power			Same as maximum of Phase A reactive power in this month
3605-3606		Maximum	0.01VA	Float (RO)	Primary
3607	Maximum	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3608	of Phase A apparent	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3609	power in this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3610-3614	Maximum of power in this r	Phase B apparent			Same as maximum of Phase A apparent power in this month
3615-3619	Maximum of power in this r	Phase C apparent month			Same as maximum of Phase A apparent power in this month
3620-3624	Maximum of t in this month	total apparent power			Same as maximum of Phase A apparent power in this month
3625-3626		Maximum	0.001	Int32 (RO)	Primary
3627	Phase A	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3628	power factor in this	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3629	month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3630-3634	Phase B pow	er factor in this			Same with Phase A power factor in this month
3635-3639	Phase C pow month	er factor in this			Same with Phase A power factor in this month
3640-3644	Total power fa	ctor in this month			Same with Phase A power factor in this month
3645-3646		Maximum	0.01	Int32 (RO)	Primary
3647		Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3648	Frequency in this month	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3649		Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3650-3651	THD of	Maximum	0.01%	Int32 (RO)	
3652	Phase A current in	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month

3653	this month Day and hour o occurrence	f	Int16 (RO)	High byte: Day; Low byte: Hour
3654	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3655-3659	Maximum THD of Phase I current in this month	3		Same as THD of Phase A current in this month
3660-3664	Maximum THD of Phase Courrent in this month			Same as THD of Phase A current in this month
3665-3669	Maximum THD of Phase A voltage in this month	Λ		Same as THD of Phase A current in this month
3670-3674	Maximum THD of Phase I voltage in this month	3		Same as THD of Phase A current in this month
3675-3679	Maximum THD of Phase Ovoltage in this month			Same as THD of Phase A current in this month

Minimum in this month, maximum in previous month, minimum in last month: Refer to maximum in this month.

Willillium	winimum in this month, maximum in previous month, minimum in last month: Refer to maximum in this month.						
3680	Minimum of Phase A	3685	Minimum of Phase B	3690	Minimum of Phase C		
3000	current in this month	3003	current in this month	3070	current in this month		
3695	Minimum of neutral	3700	Minimum of average	3705	Minimum of Phase A		
3093	current in this month	3700	current in this month	3703	voltage in this month		
3710	Minimum of Phase B	3715	Minimum of Phase C	3720	Minimum of average		
3/10	voltage in this month	3/13	voltage in this month	3720	voltage in this month		
3725	Minimum of AB line	3730	Minimum of BC line	3735	Minimum of CA line		
3723	voltage in this month	3730	voltage in this month	3733	voltage in this month		
3740	Minimum of average line	3745	Minimum of Phase A active power	3750	Minimum of Phase B active		
3740	voltage in this month	3773	in this month	3730	power in this month		
3755	Minimum of Phase C active	3760	Minimum of total active power in	3765	Minimum of Phase A reactive		
3733	power in this month	3700	this month	3703	power in this month		
3770	Minimum of Phase B	3775	Minimum of Phase C reactive	3780	Minimum of total reactive power		
3770	reactive power in this month	3113	power in this month	3760	in this month		
3785	Minimum of Phase A apparent	3790	Minimum of Phase B apparent	3795	Minimum of Phase C apparent		
3783	power in this month	3790	power in this month	3193	power in this month		
3800	Minimum of total	3805	Minimum of Phase A power factor	3810	Minimum of Phase B power		
3800	apparent power in this month	3603	in this month	3610	factor in this month		
3815	Minimum of Phase C power	3820	Minimum of total power factor in	3825	Minimum of frequency in this		
3613	factor in this month	3620	this month	3623	month		
3830	Minimum THD of Phase A	3835	Minimum THD of Phase B current	3840	Minimum THD of phase		
3630	current in this month	3033	in this month	3040	current in this month		
3845	Minimum THD of Phase A	3850	Minimum THD of Phase B voltage	3855	Minimum THD of Phase C		
3643	voltage in this month	3630	in this month	3633	voltage in this month		
3860	Maximum of Phase A current in	3865	Maximum of phase current in	3870	Maximum of Phase C current in		
3800	last month	3803	last month	3870	last month		
3875	Maximum of neutral current in	3880	Maximum of avreage current in	3885	Maximum of Phase A voltage in		
30/3	last month	3000	last month	3003	last month		
3890	Maximum of Phase B voltage in	3895	Maximum of Phase C voltage in	3900	Maximum of average voltage in		
3090	last month	3093	last month	3900	last month		
	-		40		-		

3905	Maximum of AB line voltage in last month	3910	Maximum of BC line voltage in last month	3915	Maximum of CA line voltage in last month
3920	Maximum of average line voltage in last month	3925	Maximum of Phase A active power in last month 3930		Maximum of Phase B active power in last month
3935	Maximum of Phase C active power in last month	3940	Maximum of total active power in last month	3945	Maximum of Phase A reactive power in last month
3950	Maximum of Phase B reactive power in last month	3955	Maximum of Phase C reactive power in last month	3960	Maximum of total reactive power in last month
3965	Maximum of Phase A apparent power in last month	3970	Maximum of Phase B apparent power in last month	3975	Maximum of Phase C apparent power in last month
3980	Maximum of total apparent power in last month	3985	Maximum of Phase A power factor in last month	3990	Maximum of Phase B power factor in last month
3995	Maximum of Phase C power factor in last month	4000	Maximum of total power factor in last month	4005	Maximum of frequency in last month
4010	Maximum THD of Phase A current in last month	4015	Maximum THD of Phase B current in last month	4020	Maximum THD of Phase C current in last month
4025	Maximum THD of Phase A voltage in last month	4030	Maximum THD of Phase B voltage in last month	4035	Maximum THD of Phase C voltage in last month
4040	Minimum of Phase A current in last month	4045	Minimum of Phase B current in last month	4050	Minimum of Phase C current in last month
4055	Minimum of neutral current in last month	4060	Minimum of average current in last month	4065	Minimum of Phase A voltage in last month
4070	Minimum of Phase B voltage in last month	4075	Minimum of Phase C voltage in last month	4080	Minimum of average voltage in last month
4085	Minimum of AB line voltage in last month	4090	Minimum of BC line voltage in last month 4095		Minimum of CA line voltage in last month
4100	Minimum of average line voltage in last month	4105	Minimum of Phase A active power in last month	4110	Minimum of Phase B active power in last month
4115	Minimum of Phase C active power in last month	4120	Minimum of total active power in last month	4125	Minimum of Phase A reactive power in last month
4130	Minimum of Phase B reactive power in last month	4135	Minimum of Phase C reactive power in last month	4140	Minimum of total reactive power in last month
4145	Minimum of Phase A apparent power in last month	4150	Minimum of Phase B apparent power in last month	4155	Minimum of Phase C apparent power in last month
4160	Minimum of total apparent power in last month	4165	Minimum of Phase A power factor in last month	4170	Minimum of Phase B power factor in last month
4175	Minimum of Phase C power factor in last month	4180	Minimum of total power factor in last month	4185	Minimum of frequency in last month
4190	Minimum THD of Phase A current in last month	4195	Minimum THD of Phase B current in last month	4200	Minimum THD of Phase C current in last month
4205	Minimum THD of Phase A voltage in last month	4210	Minimum THD of Phase B voltage in last month	4215	Minimum THD of Phase C voltage in last month

Register (WORD)	Description	Unit	Data Type	Note
4500-4561	2nd-63rd harmonic of Phase A current	0.01%	Int16 (RO)	

4562-4623	2nd-63rd harmonic of Phase B current	0.01%	Int16 (RO)	
4624-4685	2nd-63rd harmonic of Phase C current	0.01%	Int16 (RO)	
4686-4747	2nd-63rd harmonic of Phase A voltage	0.01%	Int16 (RO)	
4748-4809	2nd-63rd harmonic of Phase B voltage	0.01%	Int16 (RO)	
4810-4871	2nd-63rd harmonic of Phase C voltage	0.01%	Int16 (RO)	
4872	THD of Phase A current	0.01%	Int16 (RO)	
4873	THD of Phase B current	0.01%	Int16 (RO)	
4874	THD of Phase B current	0.01%	Int16 (RO)	
4875	THD of Phase A voltage	0.01%	Int16 (RO)	
4876	THD of Phase B voltage	0.01%	Int16 (RO)	
4877	THD of Phase C voltage	0.01%	Int16 (RO)	
4878	Total odd harmonic distortion (TOHD) of Phase A current	0.01%	Int16 (RO)	
4879	TOHD of Phase B current	0.01%	Int16 (RO)	
4880	TOHD of Phase C current	0.01%	Int16 (RO)	
4881	TOHD of Phase A voltage	0.01%	Int16 (RO)	
4882	TOHD of Phase B voltage	0.01%	Int16 (RO)	
4883	TOHD of Phase C voltage	0.01%	Int16 (RO)	
4884	Total even harmonic distortion (TEHD) of Phase A current	0.01%	Int16 (RO)	
4885	TEHD of Phase B current	0.01%	Int16 (RO)	
4886	TEHD of Phase C current	0.01%	Int16 (RO)	
4887	TEHD of Phase A voltage	0.01%	Int16 (RO)	
4888	TEHD of Phase B voltage	0.01%	Int16 (RO)	
4889	TEHD of Phase C voltage	0.01%	Int16 (RO)	
4890-4891	Total RMS value of phase A fundamental current	0.001A	Int32 (RO)	Primary
4892-4893	Total RMS value of phase B fundamental current	0.001A	Int32 (RO)	Primary
4894-4895	Total RMS value of phase C fundamental current	0.001A	Int32 (RO)	Primary
4896-4897	Total RMS value of phase A fundamental voltage	0.1V	Int32 (RO)	Primary
4898-4899	Total RMS value of phase B fundamental voltage	0.1V	Int32 (RO)	Primary
4900-4901	Total RMS value of phase C fundamental voltage	0.1V	Int32 (RO)	Primary
4902-4903	Total RMS value of Phase A harmonic current	0.001A	Int32 (RO)	Primary
4904-4905	Total RMS value of Phase B harmonic current	0.001A	Int32 (RO)	Primary

4906-4907	Total RMS		0.001A	Int32 (RO)	Primary	
4908-4909	Total RMS		0.1V	Int32 (RO)	Primary	
4910-4911	Total RMS		0.1V	Int32 (RO)	Primary	
4912-4913	Total RMS harmonic vo		0.1V	Int32 (RO)	Primary	
4914-5399	Reserve					
5400	Setting of	Transmission type and signal selection		Int16 (RW)	High byte: Transmission type (1:4-20mA, 2:0-20mA, 3:1-5V, 4:0-5V) Low Byte: Signal Selection (Refer to Table 3 in 7.5 System Setup - Analog Output Settings)	For example: 4-20mA is selected for the transmission type, and phase A current is selected for the signal. The corresponding value of the high point is 5000, and the corresponding value of the low point is 0, and the actual decimal point of the current
5401	transmissi	Corresponding value of the high point		Int16 (RW)	Primary	display is 3 bits. When the actual current
5402	on output	Corresponding value of the low point		Int16 (RW)	Primary	value of phase A is 5.000A, the transmission output is 20mA. When the actual current value of phase A current is 0, the output is 4 mA. When the actual current value of phase A is 2.500 A, the transmission output is 12 mA.

Other settings of transmission output: refer to setting of the 1st transmission output

5403	Setting of the 2nd transmission output	5406	Setting of the 3rd transmission output	5409	Setting of the 4th transmission output
5412	Setting of the 5th transmission	5415	Setting of the 6th transmission	5418	Setting of the 7th transmission
3412	output	3413	output	3416	output
5421	Setting of the 8th transmission	5424	Setting of the 9th transmission	5427	Setting of the 10th transmission
3421	output	3424	output	5427	output
5430	Setting of the 11th transmission	5433	Setting of the 12th transmission	5436	Setting of the 13th transmission
3430	output	3433	output	3430	output
5439	Setting of the 14th transmission	5442	Setting of the 15th transmission	5445	Setting of the 16th transmission
3439	output	3442	output	3443	output
5448	Setting of the 17th transmission	5451	Setting of the 18th transmission	5454	Setting of the 19th transmission
3440	output	3431	output	3434	output
5457	Setting of the 20th transmission	5460	Setting of the 21st transmission	5462	Setting of the 22nd transmission
5457	output	5460	output	5463	output

5466	Setting of the 23rd transmission	5469	Setting of the 24th transmission	etting of the 24th transmission 5472	
3400	output	3409	output	3472	output
5475	Setting of the 26th transmission	5478	Setting of the 27th transmission	5481	Setting of the 28th transmission
3473	output	3470	output	3401	output
5484	Setting of the 29th transmission	5487	Setting of the 30th transmission	5490	Setting of the 31st transmission
3464	output	3467	output	3490	output
5493	Setting of the 32nd transmission	5496		5499	
3493	output	3 4 90		3499	

Register (WORD)	Description		Unit	Data Type	Note	
5600	Setting of	Input type and decimal point of display		Int16 (RW)	High byte: Input type (1:4-20mA, 2:0-20mA, 3:1-5V, 4:0-5V) Low Byte: Decimal point of display (0-3)	For example: 4-20mA is selected for the input type, and decimal point is 3 digits. The display value of input high point is set to 5000, and the display value of input low
5601	the 1st analog input	Display value of input high point		Int16 (RW)	The display value of input high point (0-9999)	point is 0. When the analog input is 20mA, the display value
5602		Display value of input low point		Int16 (RW)	The display value of input low point (0-9999)	is 5.000, when the analog input is 4mA, the display value is 0.000, and when the analog input is 12mA, the display value is 2.500.

Other settings of analog input: Refer to the 1st analog input settings

	0 1		0 1		
5603	Setting of the 2nd analog input	5606	Setting of the 3rd analog input	5609	Setting of the 4th analog input
5612	Setting of the 5th analog input	5615	Setting of the 6th analog input	5618	Setting of the 7th analog input
5621	Setting of the 8th analog input	5624	Setting of the 9th analog input	5627	Setting of the 10th analog input
5630	Setting of the 11th analog input	5633	Setting of the 12th analog input	5636	Setting of the 13th analog input
5639	Setting of the 14th analog input	5642	Setting of the 15th analog input	5645	Setting of the 16th analog input
5648	Setting of the 17th analog input	5651	Setting of the 18th analog input	5654	Setting of the 19th analog input
5657	Setting of the 20th analog input	5660	Setting of the 21st analog input	5663	Setting of the 22nd analog input
5666	Setting of the 23rd analog input	5669	Setting of the 24th analog input	5672	Setting of the 25th analog input
5675	Setting of the 26th analog input	5678	Setting of the 27th analog input	5681	Setting of the 28th analog input
5684	Setting of the 29th analog input	5687	Setting of the 30th analog input	5690	Setting of the 31st analog input
5693	Setting of the 32nd analog input				

Register	Description	Unit	Data	Note
(WORD)	Description	Unit	Туре	Note
5696-5727	Inverse value of No.1-32		Int16	Lavarra valva of No. 1.22 analog Lagut
3090-3727	analog Input		(RO)	Inverse value of No.1-32 analog Input
5729 5750	The actual value of No.1-32		Int16	The unit is mA when the input selection is 4-20mA or 0-20mA, and
5728-5759	analog Input	0.001	(RO)	the unit is V when 1-5V or 0-5V is selected.

Note: 1. Read-write property: "RO" is read-only, parameter is read with 0X03H command; "R/W" is readable and writable, and system parameter is written with 0X10H command. Do not write data to unlisted or unwritable Address.

2. For Int32 type data, the high bits are in the front and the low bits are in the back

8.3 Correspondence between communication value and actual value

It is agreed that Val t is the communication readout value and Val s is the actual value.

8.3.1 Voltage, Current, Power Factor, Frequency, Unbalance (Secondary)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The correspondence between the communication value and the actual secondary measurement value is shown in the following table:

Applicable parameters	Resolution	Correspondence	Unit
Voltage ,Uan , Ubn , Ucn , Uab , Ubc , Uca	0.1V	Val_s=Val_t*0.1	V
Current, IA、 IB、 IC	0.001A	Val_s=Val_t*0.001	A
Power factor, PFA、PFB、PFC、PF &	0.001	Val_s=Val_t*0.001	No unit
Frequency, F	0.01Hz	Val_s=Val_t*0.01	Hz
Unbalance ,I(ubl), ULL(ubl),ULN(ubl)	0.1	Val_s=Val_t*0.1	%

For example: To read phase A voltage Uan, the data can be read at address 243 in Int16eger reading mode by MODSCAN, the communication read-out value Val t is 2200, then Val t = 2200*0.1=220V.

8.3.2 Voltage, Current, Power Factor, Frequency, Unbalance (Primary)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. The voltage and current occupy 2 words, and the power factor, frequency, and unbalance occupy 1 byte. The correspondence between the communication value and the actual secondary measurement value is shown in the following table:

Applicable parameters	Resolution	Correspondence	Unit
Voltage, Uan Ubn Ucn Uab Ubc Uca	0.1V	Val_s=Val_t*0.1	V
Current, IA、 IB、 IC	0.001A	Val_s=Val_t*0.001	A
Power factor, PF _A , PF _B , PF _C , PF _{Total}	0.001	Val_s=Val_t*0.001	No unit
Frequency, F	0.01Hz	Val_s=Val_t*0.01	Hz
Unbalance ,I(ubl), ULL(ubl),ULN(ubl)	0.1	Val_s=Val_t*0.1	%

For example: To read phase A voltage Uan, the data can be read at address 1120-1121 in Int16eger reading mode by MODSCAN, the communication read-out value is 9 at address 1120, communication read-out value is 10176 at address 1121, that is, communication read-out value Val t is 9*65536+10176=600000, then Val s=Val t*0.1=600000*0.1=60kV.

8.3.3 Active power, reactive power, apparent power and energy (Secondary side; W/Var/VA/kWh)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The power resolution 0.01, the correspondence between the communication value and the actual value is as follows: Val_s=Val_t*0.01; The energy resolution is 1, and the correspondence between the communication value and the actual value is as follows: Val_s=Val_t*1; where Val t=first word×65536+second word.

For example: To read phase A active power Pa, the data can be read at address 253-254 in Int16eger reading mode by MODSCAN, the communication read-out value is 1 at address 253 and 26000 at address 254, that is $Val_t=1\times65536+26000=91536$, then $Val_s=Val_t*0.01=915.36W$.

For example: To read positive active energy IMP, the data can be read at address 300-301 MODSCAN in Int16eger reading mode by MODSCAN, the communication read-out

 $value \ is \ 0 \ at \ address \ 300 \ and \ 19000 \ at \ address \ 301, \ that \ is, \quad Val_t = 0x65536 + 19000 = 19000, \ then \ Val_s = Val_t*1 = 19000Wh = 19kWh.$

8.3.4 Active power, reactive power, apparent power and energy (primary side; W/Var/VA/kWh)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies a float (two words). The power resolution is 0.01, and the correspondence between the communication value and the actual value is as follows: Val_s=Val_t*0.01; the energy resolution is 1, and the correspondence between the communication value and the actual value is as follows: Val s=Val t*1; Val t is calculated as follows:

For example: To read phase A active power PA, the data can be read at address 1150-1151 in Floating Pt reading mode by MODSCAN, the read-out value Val t=110000, then Val s=Val t*0.01=1100W.

For example: To read phase positive active energy IMP, the data can be read at address 3050-3051 in Floating Pt reading mode by MODSCAN, the read-out value Val_t=589000, then Val_s = Val_t*1=589000Wh=589kWh.

8.3.5 Harmonic data of voltage and current

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The resolution is 0.01, and the correspondence between the communication value and the actual value is as follows: Val_s=(Val_t*0.01).

For example: To read current 3rd harmonic content, the data can be read at address 4501 in Integer reading mode by MODSCAN, the communication readout Val t is 157, then Val s = (Val t*0.01)%=1.57%.

8.3.6 Demand

Demand includes three phase currents and active power, reactive power, and the maximum demand of apparent power and time of occurrence. The demand data format is as follows:

Address	Address	Address 2	Address 3	Add	Address 4		
	H16	L16	H8		L8	Н8	L8
Content	INT32		H4	L4	Lo	по	Lo
Content			Year (Only a bit is reserved, ten bit needs to be filled in according to the current time)	Month	Day	Hour	Minute

Note: H8 indicates eight high bits, L8 indicates eight low bits, and others are similar.

Take reading the maximum demand of phase A current ($1200\sim1203$) as an example, the read-out value is $0x0000\ 0x157C\ 0x7512\ 0x0E16$

Address	1200	1200 1201 1202						
	#16 L16 0x0000 0x157C Demand value		Н8	L8	110	т 0		
Content			H4	L4	Lo	Н8	L8	
Content			0x7	0x5	0x12	0x0E	0x16	
			Year	Month	Day	Hour	Minute	
Analysis	0*65536+0x157C=5500		17 (ten bit needs to be filled in according to the current time)	5	18	14	22	

The maximum demand for Phase A current is: At 14:22 on May 18, 2017, the demand value is 5.500A.

8.3.7 Event Record

Event record 1 - event record 16, recorded in order of time, that is, event record 1 records the data of the most recent event, and event record 16 records the data of the earliest event, the data format of each event record is as follows:

Address		Address 1								Add	lress 2	Address 3		Address 4	
			I	H8					L8	Н8	L8	Н8	L8	Н8	L8
内容	В7	В6	В5	В4	В3	В2	B1	В0	Lo	по	Lo	по	Lo	по	Lo
Content	0: DO	0:Open							C	V	M41-	D	11	Minnet	C1
	1: DI	1:Closed							Switch number	Year	Month	Day	Hour	Minute	Second

Take reading the event record 1 (2200~2203) as an example, the read-out value is 0x4000 0x1101 0x160D 0x3820.

				`				1 /							
Address		2200								2201		2202		2203	
	H8					110	10	110	т 0	Н8	1.0				
	В7	В6	В5	В4	В3	B2	В1	В0	L8	H8	L8	H8	L8	пв	L8
Content	0	1	0	0	0	0	0	0	0	0x11	0x01	0x16	0x0D	0x38	0x20
	0: DO	0:Open							Switch	年	Month	Day	Hour	Minute	Second
	1: DI	1:Closed							number	Year	Monui	Day	поиг	Williate	Second
Analysis	DO	Closed							DO1	17	1	22	14	56	32

DO1 changed from open to closed at 14:56:32 on January 22,2017.

8.3.8 Alarm Record

The data format of the alarm record is as follows:

Address	Address 1			Address 2		Address 3		ess 4	Address 5	Address 6
	Н8	L8	Н8	L8	Н8	L8	Н8	L8		
Content	Alarm group 0: The alarms of the first group 1: The alarms of the second group	Alarm type (Refer to 7.4 Alarms viewing - entry number for alarm classification description)	Yea r	Mo nth	Day	Hou r	Min ute	Sec ond	Alarm value	Alarm status

Take reading the latest alarm record (2300-2305) as an example, the read-out value is $0x000C\ 0x1101\ 0x160E\ 0x3820\ 0x0960\ 0x0001$.

Address	2	2:	301	23	02	23	03	2304	2305	
	Н8	L8	Н8	L8	Н8	L8	Н8	L8		
Content	0x00	0x0C	0x11	0x01	0x16	0x0E	0x38	0x20	0x0960	0x0001
	Alarm group	Alarm type	Year	Month	Day	Hour	Minute	Second	Alarm value	Alarm status
Analysis	The alarms of the first group	Phase A overvoltage alarm	17	1	22	14	56	32	2400	Act

Phase A overvoltage alarm (the first group of alarms) occurs at 14:56:32, January 22, 2017, the alarm value is 240.0V.

8.3.9 DO Settings

Associated alarm configuration format of do settings is as follows:

Address	Address 1					I	Address 2	2		
	H16						L16			
			INT32							
	B31	B30	B29			B 2	B1	В0		
Content	Associated with the alarm number 31 of the first group (Alarm of over active power)				and so on			Associated with the alarm number 0 of the first group (phase A overcurrent alarm) (1: valid; 0: invalid)		
Address	Address 3					Ado	dress 4			
	H16]	L16			
				INT	32					
Content	B31	B14	В1	.3		B 2	B1	В0		
	Associated with the alarm number 63 of the first group (DI2 alarm)	and so on				Associated with the alarm number 32 of the first				

											oup (Alarm of over		
Address				.ddress 5					ddress 6		reactive power)		
Address			A					A					
				H16		DIT	22		L16				
	B31		D(B5	B4	INT:	33	B2	B1		DO		
Content	B31	••••	В6		В4	1	55	DZ	DI		В0		
Content				Associated first group						Asso	ciated with the alarm		
				alarm No. 69(Fourth						nu	mber 64 of the first		
				channel temperature alarm)						g	roup (DI3 alarm)		
Address				Address 7		Address 8							
radicss				H16					L16				
				1110		INT:	32.						
				B31		B3 0	B29		B2	B1	В0		
Content						0					Associated with		
Content											the alarm number		
	Ass	ociated	with the	alarm number 31 of the se	econd			and so			0 of the second		
	group (Alarm of over active power)							on			group (phase A		
											overcurrent alarm)		
Address				Address 9					Address	10	,		
				H16					L16				
						INT:	32						
				B31		B1 4	B13		B2	B1	В0		
_											Associated with		
Content											the alarm number		
	Ass	ociated	with the	alarm number 63 of the se	econd			and so			31 of the second		
			gro	oup (DI2 alarm)				on			group (Alarm of		
											over reactive		
											power)		
Address				Address 11					Address	12			
				H16					L16				
						INT:	32						
	B31		В6	B1	B4		В3	B2	B1		В0		
Content				Associated second						Asso	ciated with the alarm		
				group alarm No.							ber 64 of the second		
	69(Fourth channel										roup (DI3 alarm)		
				temperature alarm)									

Take reading the associated alarm settings of DO1 (2590-2601) as an example, the read-out value is $0x0000\ 0x0000\ 0x0000\ 0x0000\ 0x0000\ 0x0000\ 0x0000\ 0x0000$

Address	2590	2591				
	H16	L16				
Content			INT32			
	B31	B30	B29	 B2	B1	В0

	0	0	0	0	1	1	1
							Associated with the
	Associated with the alarm number 31 of			and so			alarm number 0 of
	the first group (Alarm of over active power)						the first group
				on			(phase A
							overcurrent alarm)

The remaining addresses in this example are all 0 and are no longer listed.

If the current DO1 function is controlled by the alarm of the first group, in this example, DO1 is associated with the phase A overcurrent alarm, the phase B overcurrent alarm, and the phase C overcurrent alarm of the first group.

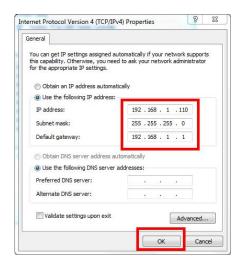
9 Ethernet Communication Guide

9.1 Ethernet Parameter Modification

9.1.1 Modification by Button

Refer to 7.5 Network Settings of System Settings

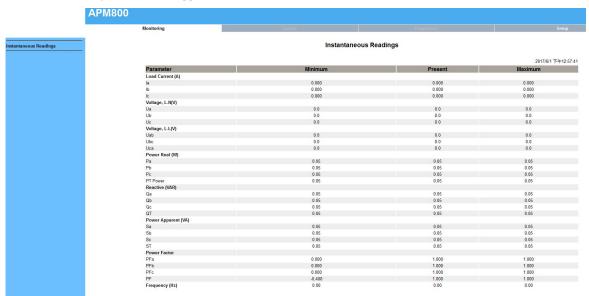
9.1.2 Modification by Modbus Communication


Follow these steps to modify the Ethernet parameters:

- 1) Send the command 0xABCD to the register with the address 29 to enter the Ethernet setting mode; Send the command 0 to the register with the address 29 to exit the Ethernet setting mode, and the modified parameters are not saved at this time.
- 2) The new value can be written to the register after entering the Ethernet setting mode. If the Ethernet mode is not entered, the modification is invalid.
- 3) Send the command 0XABCD to the the register with the address 37 to save the changes. After it is written successfully, the Ethernet module enters the restart mode. After the Ethernet module restarts successfully, the host can read the Ethernet parameters correctly.

9.1.3 Modification by Web Pages

Local network settings


Firstly, enter the operating system (take win7 as an example), use the mouse to click on the network icon on the bottom right corner, click on "Open Network and Sharing Center", click on the change adapter settings, right-click the local connection, click properties, double-click Internet Protocol Version 4 (TCP / IPv4), you will see the page shown below. Please follow the instructions, select "Use the following IP address", and fill in the IP address 192.168.1.110 (the same subnet), the subnet mask 255.255.255.0, the default gateway 192.168.1.1 (The DNS part can be left blank). Click OK on the page and click OK on the Local Area Connection Properties page to wait for system to complete configuration.

Connect the Ethernet module and the computer with a twisted-pair B cable, power the meter. If the local connection on the bottom right corner of the computer monitor is connected at this point, you can continue to the next step. Otherwise, power off the meter, check the network cable and network settings.

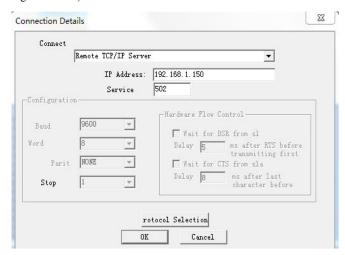
WEB page configuration

Open Internet Explorer, enter the Ethernet IP address in the address bar (http://192.168.1.150/, factory default setting), and the login screen shown in the figure below will appear.

Click Setup to enter the Ethernet & TCP/IP configuration interface, as shown below:

After the modification is completed, click Apply to wait for it to take effect.

9.2 Extension of RS485 Communication


Extended 485 communication does not support the DLT-645 protocol and only supports the Modbus-RTU protocol.

9.2.1 Extending RS485 Communication as a Modbus Slave Station

When the second communication serves as a slave station, as the first channel RS485 communication, only supports the 0x03 command and does not support the 0x10 command. Refer to Chapter 8 for the address table.

9.2.2 Modbus TCP communication (Using ModScan software)

When using the Ethernet Modbus_TCP protocol, it supports 0x01 (read coil status), 0x02 (read input status), 03 (read hold register), 0x05 (write single coil). (Note: When using the 01, 02, and 05 commands, they all correspond to the APM8xx meter's own information. DI1 and DO1 correspond to the starting address 0.)

The contents of the following address table are for Modbus TCP operation only. (Related to the slave information read by the user)

Register (WORD)	Name	Resolution	Data type (Read-write attribute)	Note
39992-39993	Group 32-1 slave status		Int32 (RO)	The high byte is first, the low byte is after, bit0 is the first group state, and 1 is the read failure, and the corresponding cache is cleared.
39994-39995	Group 64-33 slave status		Int32 (RO)	The same as above
39996-39997	Group 96-65 slave status		Int32 (RO)	The same as above
39998-39999	Group 128-97 slave status		Int32 (RO)	The same as above
40000-57999	Information area read from slave station		RO	Example is as follow
58000	Read slave station timeout	1ms	UInt16(RW)	Example is as follow
58001	Slave station access interval time	1ms	UInt16(RW)	Example is as follow
58002	Group 1 slave station address		UInt16(RW)	1-247 (Slave address station, does not take effect when set to 0)
58003	Group 1 communication start address		UInt16(RW)	0-65535
58004	Group 1 communication length		UInt16(RW)	(Does not take effect when set to 0)
58005-58385	Group 2-128 slave station settings		UInt16(RW)	Same as 58002-58004
58386-58399	Reserved			
58400-58527	Failure rate		UInt16(RO)	Communication reads state of each group, the slave access failure rate of last 20 visits, 100% means the disconnection and clear cache

58600-58728	Number of errors	UInt16(RO)	The cumulative number of failures used to
			debug slave access
58800-58928	Number of	UInt16(RO)	The cumulative number of
	transmissions		transmissions used to debug slave access

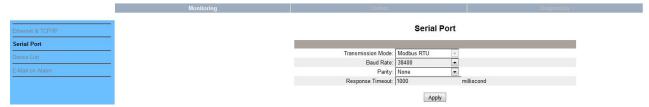
E.g:

The settings are as follows: The first group slave station address is 1, the start address is set to 0, the communication length is 125, the second group slave station address is 2, the start address is 20, and the communication length is 125, the read information area 40000-40124 corresponds to the information of the first group of slave station addresses 0-125, 40125-40249 corresponds to the information of the second group of slaves station 20-144, and so on, when the communication length of the 128 groups of devices is 125, the corresponding information area is 40000 -55999. If fail to read the information from the slave station, the read information area corresponding to the slave station is 0.

Baud rate (bps)	Read slave station timeout (Recommended	Slave station access interval time				
	setting time)	(recommended setting time)				
1200	2500ms	10-20ms				
2400	2000ms	10-20ms				
4800	1500ms	10-20ms				
≥9600	1000ms	10-20ms				

9.2.3 Extending RS485 Communication as modbus Master

When the extended communication is used as a master station, a small serial port server can be implemented in conjunction with the Ethernet interface.


Extended serial port parameter configuration

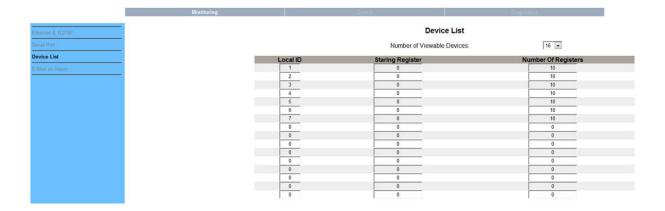
Method 1:

Refer to bus 1 in the communication settings of 7.5 system settings to modify the parameters of bus 2.

Method 2:

According to the operation method of 9.1.3, after connecting the Ethernet module, click Setup->Serial Port to enter the serial port setting, and set the baud rate, check digit and response time. Click Apply when you are done to wait for it to take effect. As shown below:

Modbus master parameter reading

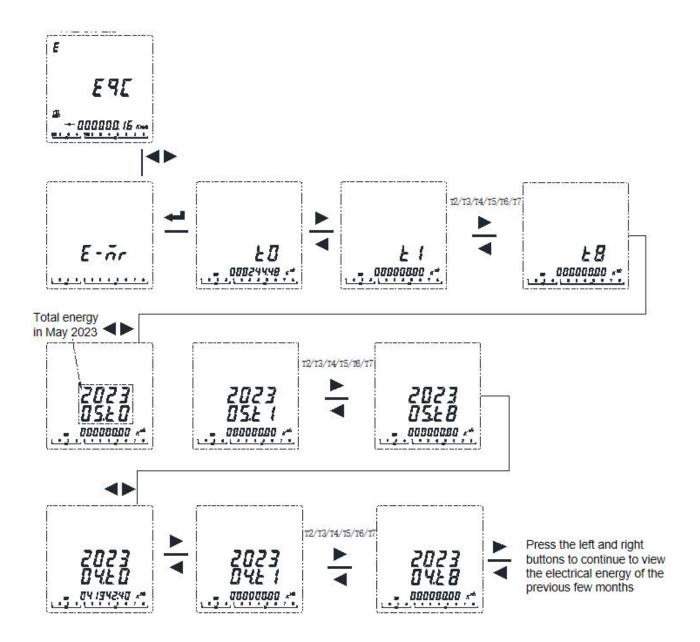

According to the operation method of 9.1.3, after connecting the Ethernet module, click Setup->Device List to enter the Modbus master parameter reading, as shown below.

- 1. Number of Viewable: Users can configure up to 128 groups of 03 read commands of slaves.
- 2. Local ID: Meter Slave Address
- 3. Starting Register: Start Register Address
- 4. Number Of Register: The length of the register.

Note: If you need to modify the above parameters, please refer to 9.2.2 to modify the settings with the corresponding address by Modbus-TCP. After the 9.2.2 setting is completed, click Device List to refresh again.

The module will read the data from the slave according to this configuration. The read data is stored in registers starting with address 40000, which can be read by Modbus-Tcp.

For example: Read by Modbus-Tcp, the first one is to read 10 data starting from register 0 with slave address 1 and read 40000-40009, the second is to read 10 data starting from register 0 with slave address 2, read 40010-40019, and so on.

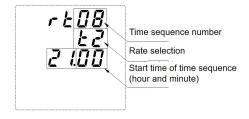

10 Description of multiple rate energy

10.1 Viewing the multiple rate energy

View multiple rate energy: press < ▶ > key in the EQC(capacitive reactive energy) interface, press Enter to view multiple rate energy after displaying the E-Mr interface, and press < ▶ >key to successively display: T0- total energy, T1-tip energy, T2-peak energy, T3-flat energy, T4-valley electric energy, T5-deep valley electric energy, T5-T8 reserved. Continue to press the <> key to display the historical complex power.

Note: 1. Multiple rate electricity metering can be set up to four time zones, with each time zone consisting of 14 time periods. There are 8 rates (T1 (tip), T2 (peak), T3 (flat), T4 (valley), T5 (deep valley), T6-T8 temporarily reserved) to complete the time-of-use metering of electricity, which can be set through buttons and communication.

- 2. T represents the total compound rate active energy of the month or history.
- 3. The meter reading day is a natural month, and at the end of each month from 23:59:59 to 00:00:00 on the first day of the following month, the active energy IMP (T0-T8, T) of that month will be automatically placed in the active energy display interface of the previous month, and the active energy value of the previous month will be placed in the active energy display interface of the previous month. At the same time, the active energy display value of this month will be reset to zero.



10.2 Multiple Rate Setting

Refer to Chapter 7 Parameter Setting to enter the setting mode.

Multiple rate rate setting

- 1. Press< \blacktriangleright > key until COST is selected,and then press the<ENTER>key.
- 2. Press< ▶ > key until Rate is selected,and then Press the<ENTER>key.
- 3. Press< ► >Key, select the time zone you want to modify (such as ZONE 1, which represents the first time zone),and then press the<ENTER>key.

- 4. Press<► > Key, select the time period to modify, totaling 10 time periods, and then press the <ENTER>key.
- 5. Press< ► >Key, select the rate for the current period (the rate can be set to T1 (tip), T2 (peak), T3 (flat), T4 (valley), T5 (deep valley), T6 (reserved), T7 (reserved), T8 (reserved)), and press the <ENTER>key.
 - 6. When setting the start time of the period, press the ENTER>key.
 - 7. Set the starting time of the period and press the ENTER>key.

- 8. Repeat step 4 to modify other time periods, as detailed in the table below.
- 9. Press the ESC>key to return to the COST interface.

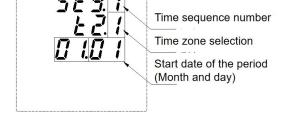
SN	Rate	Time	Description
1	3	00.00	During the period from 00:00 to 03:00, the rate is T3 (flat)
2	2	03.00	During the period from 03:00 to 06:00, the rate is T2 (peak)
3	2	06.00	During the period from 06:00 to 09:00, the rate is T2 (peak)
4	1	09.00	During the period from 09:00 to 12:00, the rate is T1 (tip)
5	2	12.00	During the period from 12:00 to 15:00, the rate is T2 (peak)
6	1	15.00	During the period from 15:00 to 18:00, the rate is T1 (tip)
7	2	18.00	During the period from 18:00 to 21:00, the rate is T2 (peak)
8	2	21.00	During the period from 21:00 to 22:00, the rate is T2 (peak)
9	2	22.00	During the period from 22:00 to 23:00, the rate is T2 (peak)
10	2	23.00	During the period from 23:00 to 24:00, the rate is T2 (peak)

Note: When manually setting or writing the rate period through communication, it is necessary to ensure that the time set for the next period is greater than the time set for the previous period.

Multiple rate time zone selection settings

- 1. Press< ► > key until COST is selected, and then press the<ENTER>key
- 2. Press< ► > key until SEL (time zone selection) is selected, and then press the <ENTER>key.
- 3. Press< \blacktriangleright > Key, select the SEG (6 segments in total) that you

want to modify (such as SEG.1, which represents the first segment), and then press the <ENTER>key.


4. Set the time zone (TZ, Time Zone), with 4 optional time zones.

- 5. Set the start date month and press the <ENTER>key.
- 6. Set the start date by pressing the ENTER > key.
- 7. Repeat step three to modify other time periods. Please refer to the table below for a detailed description.
- 8. Press the ESC key until you return to the COST interface.

SN	Zone	Time	Description
1	1	01.01	Indicates that from January 1st to February 1st, time zone 1 is used to calculate the compound
			rate electricity energy
2	1	02.01	Indicates that from February 1st to April 1st, time zone 1 is used to calculate the compound rate
			electricity energy
3	2	04.01	Indicates that from April 1st to June 1st, time zone 2 is used to calculate the compound rate
			electricity energy
4	3	06.01	Indicates that from June 1st to August 1st, time zone 3 is used to calculate the compound rate
			electricity energy
5	4	08.01	Indicates that from August 1st to October 1st, time zone 4 is used to calculate the compound
			rate electricity energy
6	4	10.01	Indicates that from October 1st to January 1st, time zone 4 is used to calculate the compound
			rate electricity energy

Note: When manually setting or writing communication time periods, it is necessary to ensure that the date set for the next time period is greater than the date set for the previous time period.

10.1 Multiple rate electrical energy communication address table

Four rate address table (T1 tip , T2 peak, T3 flat, T4 valley):

Register	Name	Resolution	Data Type (Read	Remarks
(WORD)			Write Attribute)	
308-309	Positive total active energy (T)	1WH	Int32 (RO)	Secondary side
210 211			(P.0)	electrical energy
310-311	Positive total active tip energy (T1)	1WH	Int32 (RO)	Secondary side
212 212	D. W. and J. (TO)	17777	I (22 (B.C))	electrical energy
312-313	Positive total active peak energy (T2)	1WH	Int32 (RO)	Secondary side
214 215	D. W. and J. G. (TO)	17777	T (22 (P.C))	electrical energy
314-315	Positive total active flat energy (T3)	1WH	Int32 (RO)	Secondary side
216 217	D '' (I ' I T T T T T T T T T T T T T T T T T	133711	L (22 (DO)	electrical energy
316-317	Positive total active valley energy (T4)	1WH	Int32 (RO)	Secondary side
210 210	D. W	133711	L (22 (BO)	electrical energy
318-319	Positive active total energy of this month	1WH	Int32 (RO)	Secondary side
220 221	(T)	133711	L (22 (DO)	electrical energy
320-321	Positive active tip energy of this month	1WH	Int32 (RO)	Secondary side
222 222	(T1)	133711	L (22 (DO)	electrical energy
322-323	Positive active peak energy of this month	1WH	Int32 (RO)	Secondary side
224 225	(T2)	133711	L.,422 (DO)	electrical energy
324-325	Positive active flat energy of this month	1WH	Int32 (RO)	Secondary side
226 227	(T3)	133711	L (22 (DO)	electrical energy
326-327	Positive active valley energy of this month	1WH	Int32 (RO)	Secondary side
220 220	(T4)	133711	L.,422 (DO)	electrical energy Secondary side
328-329	Positive active total energy of last month	1WH	Int32 (RO)	
220 221	(T)	1WH	L.,422 (DO)	electrical energy
330-331	Positive active tip energy of last month	IWH	Int32 (RO)	Secondary side electrical energy
222 222	(T1)	133711	L.,422 (DO)	
332-333	Positive active peak energy of last month	1WH	Int32 (RO)	Secondary side electrical energy
334-335	(T2) Resitive active flat energy of last month	133/11	Int22 (BO)	
334-333	Positive active flat energy of last month (T3)	1WH	Int32 (RO)	Secondary side electrical energy
336-337	Positive active valley energy of last month	1WH	Int32 (RO)	Secondary side
330-337	(T4)	IWП	IIII.52 (KO)	electrical energy
338-339	Positive active total energy of last two	1WH	Int32 (RO)	Secondary side
330-339	month (T)	1 **11	mt32 (RO)	electrical energy
340-341	Positive active tip energy of last month	1WH	Int32 (RO)	Secondary side
340-341	(T1)	1 ***11	mt32 (KO)	electrical energy
342-343	Positive active peak energy of last two	1WH	Int32 (RO)	Secondary side
342 343	month (T2)	1 ***11	mt32 (NO)	electrical energy
342-343	Positive active flat energy of last two	1WH	Int32 (RO)	Secondary side
312313	month (T3)	1 1111	111.02 (100)	electrical energy
346-347	Positive active valley energy of last two	1WH	Int32 (RO)	Secondary side
210317	month (T4)			electrical energy
348-349	Reverse total active energy (T)	1WH	Int32 (RO)	Secondary side
3.0 3.17				electrical energy
350-351	Reverse active tip energy (T1)	1WH	Int32 (RO)	Secondary side

				electrical energy
352-353	Reverse active peak energy (T2)	1WH	Int32 (RO)	Secondary side electrical energy
354-355	Reverse active flat energy (T3)	1WH	Int32 (RO)	Secondary side electrical energy
356-357	Reverse active valley energy (T4)	1WH	Int32 (RO)	Secondary side electrical energy
358-359	Reverse total active energy of this month(T)	1WH	Int32 (RO)	Secondary side electrical energy
360-361	Reverse active tip energy of this month(T1)	1WH	Int32 (RO)	Secondary side electrical energy
362-363	Reverse active peak energy of this month(T2)	1WH	Int32 (RO)	Secondary side electrical energy
364-365	Reverse active flat energy of this month(T3)	1WH	Int32 (RO)	Secondary side electrical energy
366-367	Reverse active valley energy of this month (T4)	1WH	Int32 (RO)	Secondary side electrical energy
368-369	Reverse total active energy of last month (T)	1WH	Int32 (RO)	Secondary side electrical energy
370-371	Reverse active tip energy of last month (T1)	1WH	Int32 (RO)	Secondary side electrical energy
372-373	Reverse active peak energy of last month (T2)	1WH	Int32 (RO)	Secondary side electrical energy
374-375	Reverse active flat energy of last month (T3)	1WH	Int32 (RO)	Secondary side electrical energy
376-377	Reverse active valley energy of last month (T4)	1WH	Int32 (RO)	Secondary side electrical energy
378-379	Reverse total active energy of last two month (T)	1WH	Int32 (RO)	Secondary side electrical energy
380-381	Reverse active tip energy of last two month (T1)	1WH	Int32 (RO)	Secondary side electrical energy
382-383	Reverse active peak energy of last two month (T2)	1WH	Int32 (RO)	Secondary side electrical energy
384-385	Reverse active flat energy of last two month (T3)	1WH	Int32 (RO)	Secondary side electrical energy
386-387	Reverse active valley energy of last two month (T4)	1WH	Int32 (RO)	Secondary side electrical energy
3050-3051	Positive total active energy (T)	1WH	Float (RO)	Primary side electrical energy
3052-3053	Positive total active tip energy (T1)	1WH	Float (RO)	Primary side electrical energy
3054-3055	Positive total active peak energy (T2)	1WH	Float (RO)	Primary side electrical energy
3056-3057	Positive total active flat energy (T3)	1WH	Float (RO)	Primary side electrical energy
3058-3059	Positive total active valley energy (T4)	1WH	Float (RO)	Primary side electrical energy

3060-3061	Positive active to	tal energy of this month	1WH	Float (RO)	Primary side
3000-3001	(T)				electrical energy
3062-3063	Positive active ti	p energy of this month	1WH	Float (RO)	Primary side
3002-3003	(T1)				electrical energy
3064-3065	Positive active pe	ak energy of this month	1WH	Float (RO)	Primary side
3004-3003	(T2)				electrical energy
2066 2067	Positive active fla	at energy of this month	1WH	Float (RO)	Primary side
3066-3067	(T3)				electrical energy
3068-3069	Positive active val	ley energy of this month	1WH	Float (RO)	Primary side
3008-3009	(T4)				electrical energy
3070-3071		Total positive active	1WH	Float (RO)	Primary side
30/0-30/1		energy(T)			electrical energy
3072-3073		Total positive active	1WH	Float (RO)	Primary side
3072-3073	I Listani Ianuani	tip energy(T1)			electrical energy
3074-3075	History January	Total positive active	1WH	Float (RO)	Primary side
30/4-30/3	Multiple-rate	peak energy(T2)			electrical energy
2076 2077	energy	Total positive active	1WH	Float (RO)	Primary side
3076-3077		flat energy(T3)			electrical energy
2079 2070		Total positive active	1WH	Float (RO)	Primary side
3078-3079		valley energy(T4)			electrical energy

3080	History February positive	3090	History March positive active	3100	History April positive active
	active energy		energy		energy
3110	History May positive active	3120	History June positive active	3130	History July positive active
	energy		energy		energy
3140	History August positive active	3150	History September positive	3160	History October positive
	power		active energy		active power
3170	History November positive	3180	History December positive		
	active power		active power		

Register (WORD)	Name	Resol ution	Data Type (Read Write Attribute)	Remarks
3190-3191	Reverse total active energy (T)	1WH	Float (RO)	Primary side electrical energy
3192-3193	Reverse total active tip energy (T1)	1WH	Float (RO)	Primary side electrical energy
3194-3195	Reverse total active peak energy (T2)	1WH	Float (RO)	Primary side electrical energy
3196-3197	Reverse total active flat energy (T3)	1WH	Float (RO)	Primary side electrical energy
3198-3199	Reverse total active valley power (T4)	1WH	Float (RO)	Primary side electrical energy
3200-3201	Total reverse active energy of this month(T)	1WH	Float (RO)	Primary side electrical energy
3202-3203	Reverse active tip energy of this month(T1)	1WH	Float (RO)	Primary side electrical energy

3204-3205	Reverse active peak energy of this month(T2)		1WH	Float (RO)	Primary side electrical energy
3206-3207	Reverse active flat energy of this month(T3)		1WH	Float (RO)	Primary side electrical energy
3208-3209	Reverse active v this month(T4)	alley energy of	1WH	Float (RO)	Primary side electrical energy
3210-3211		Reverse total active energy (T)	1WH	Float (RO)	Primary side electrical energy
3212-3213		Reverse tip active energy (T1)	1WH	Float (RO)	Primary side electrical energy
3214-3215	History January Multiple-rate	Reverse peak active energy (T2)	1WH	Float (RO)	Primary side electrical energy
3216-3217	energy	Reverse active power (T3)	1WH	Float (RO)	Primary side electrical energy
3218-3219		Reverse valley active energy (T4)	1WH	Float (RO)	Primary side electrical energy

3220	History February reverse	3230	History March reverse	3240	History April reverse active
	active energy		active energy		energy
3250	History May reverse active	3260	History June reverse active	3270	History July reverse active
	energy		energy		energy
3280	History August reverse	3290	History September reverse	3300	History October reverse
	active power		active energy		active power
3310	History November reverse	3320	History December reverse		
	active power		active power		

Note: When reading the historical electric energy, if the current month is August 2016 or the previous month (July), the historical electric energy of July (3270) register needs to be read, and the historical electric energy of December (3320) register means the electric energy of December 2015.

Eight rate address table: (T1 tip, T2 peak, T3 flat, T4 valley, T5 deep valley, T6-T8 temporarily reserved)

Register (WORD)	Name	Resolu tion	Data Type (Read Write Attribute)	Remarks
7728	Total positive active energy (T)	1WH	Uint32 (RO)	Secondary side electrical energy
772A	Total positive active tip energy (T1)	1WH	Uint32 (RO)	Secondary side electrical energy
772C	Total positive active peak energy (T2)	1WH	Uint32 (RO)	Secondary side electrical energy
772E	Total positive active flat energy (T3)	1WH	Uint32 (RO)	Secondary side electrical energy
7730	Total positive active valley energy (T4)	1WH	Uint32 (RO)	Secondary side electrical energy
7732	Total positive active deep valley energy	1WH	Uint32 (RO)	Secondary side electrical energy
	(T5)			

7734	Reserved(T6)	1WH	Uint32 (RO)	Secondary side electrical energy
7736	Reserved(T7)	1WH	Uint32 (RO)	Secondary side electrical energy
7738	Reserved(T8)	1WH	Uint32 (RO)	Secondary side electrical energy
773A	Total positive active energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
773C	Total positive active tip energy of this month (T1)	1WH	Uint32 (RO)	Secondary side electrical energy
773E	Total positive active peak energy of this month(T2)	1WH	Uint32 (RO)	Secondary side electrical energy
7740	Total positive active flat energy of this month(T3)	1WH	Uint32 (RO)	Secondary side electrical energy
7742	Total positive active valley energy of this month(T4)	1WH	Uint32 (RO)	Secondary side electrical energy
7744	Total positive active deep valley energy of this month(T5)	1WH	Uint32 (RO)	Secondary side electrical energy
7746	Reserved(T6)	1WH	Uint32 (RO)	Secondary side electrical energy
7748	Reserved(T7)	1WH	Uint32 (RO)	Secondary side electrical energy
774A	Reserved(T8)	1WH	Uint32 (RO)	Secondary side electrical energy
7824	Total reversed active energy (T)	1WH	Uint32 (RO)	Secondary side electrical energy
7826	Total reversed active tip energy (T1)	1WH	Uint32 (RO)	Secondary side electrical energy
7828	Total reverse active peak energy (T2)	1WH	Uint32 (RO)	Secondary side electrical energy
782A	Total reverse active flat energy (T3)	1WH	Uint32 (RO)	Secondary side electrical energy
782C	Total reverse active valley energy (T4)	1WH	Uint32 (RO)	Secondary side electrical energy
782E	Total reverse active deep valley energy (T5)	1WH	Uint32 (RO)	Secondary side electrical energy
7830	Reserved(T6)	1WH	Uint32 (RO)	Secondary side electrical energy
7832	Reserved(T7)	1WH	Uint32 (RO)	Secondary side electrical energy
7834	Reserved(T8)	1WH	Uint32 (RO)	Secondary side electrical energy
7836	Total reverse active energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
7838	Total reverse active tip energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
783A	Total reverse active peak energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
783C	Total reverse active flat energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
783E	Total reverse active valley energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
7840	Total reverse active deep valley energy of this month (T)	1WH	Uint32 (RO)	Secondary side electrical energy
7842	Reserved(T6)	1WH	Uint32 (RO)	Secondary side electrical energy
7844	Reserved(T7)	1WH	Uint32 (RO)	Secondary side electrical energy
7846	Reserved(T8)	1WH	Uint32 (RO)	Secondary side electrical energy
7530	Total positive active energy (T)	1WH	Float (RO)	Primary side electrical energy
7530			. , ,	
1341	Total positive active tip energy (T1)	1WH	Float (RO)	Primary side electrical energy

7536	Total positive active flat energy (T1)		1WH	Float (RO)	Primary side electrical energy
7538	Total positive	active valley energy (T1)	1WH	Float (RO)	Primary side electrical energy
753A	Total positive active deep valley energy (T1)			Float (RO)	Primary side electrical energy
753C	Reserved(T6)		1WH	Float (RO)	Primary side electrical energy
753E	Reserved(T7)		1WH	Float (RO)	Primary side electrical energy
7540	Reserved(T8)		1WH	Float (RO)	Primary side electrical energy
7542	Total positive (T)	active energy of this month	1WH	Float (RO)	Primary side electrical energy
7544	Total positive active tip energy of this month (T1)		1WH	Float (RO)	Primary side electrical energy
7546	Total positive month (T2)	active peak energy of this	1WH	Float (RO)	Primary side electrical energy
7548	Total positive active flat energy of this month (T3)		1WH	Float (RO)	Primary side electrical energy
754A	Total positive month (T4)	active valley energy of this	1WH	Float (RO)	Primary side electrical energy
754C	Total positive active deep valley energy of this month (T5)		1WH	Float (RO)	Primary side electrical energy
754E	Reserved(T6)		1WH	Float (RO)	Primary side electrical energy
7550	Reserved(T7)		1WH	Float (RO)	Primary side electrical energy
7552	Reserved(T8)		1WH	Float (RO)	Primary side electrical energy
7554		Total positive active energy (T)	1WH	Float (RO)	Primary side electrical energy
7556		Total positive active tip energy (T1)	1WH	Float (RO)	Primary side electrical energy
7558		Total positive active peak energy (T2)	1WH	Float (RO)	Primary side electrical energy
755A	History Total positive active flat energy (T3)		1WH	Float (RO)	Primary side electrical energy
755C	energy Total positive active valley energy (T4)		1WH	Float (RO)	Primary side electrical energy
755E		Total positive active deep valley energy (T5)	1WH	Float (RO)	Primary side electrical energy
7560	Reserved(T6) Reserved(T7) Reserved(T8)		1WH	Float (RO)	Primary side electrical energy
7562			1WH	Float (RO)	Primary side electrical energy
7564			1WH	Float (RO)	Primary side electrical energy

7566	History February positive active	7578	History March positive	758A	History April positive active
	energy		active energy		energy
759C	History May positive active	75AE	History June positive active	75C0	History July positive active
	energy		energy		energy
75D2	History August positive	75E4	History September positive	75F6	History October positive
	active power		active energy		active power
7608	History November positive	761A	History December positive		
	active power		active power		

Register (WORD)		Name	Resolutio n	Data Type (Read Write Attribute)	Remarks
762C	Reverse to	otal active energy (T)	1WH	Float (RO)	Primary side electrical energy
762E	Reverse to	otal active tip energy (T1)	1WH	Float (RO)	Primary side electrical energy
7630	Reverse to	otal active peak energy (T2)	1WH	Float (RO)	Primary side electrical energy
7632	Reverse to	otal active flat energy (T3)	1WH	Float (RO)	Primary side electrical energy
7634	Reverse (T4)	total active valley energy	1WH	Float (RO)	Primary side electrical energy
7636	Reverse energy (T	total active deep valley 5)	1WH	Float (RO)	Primary side electrical energy
7638	Reserved		1WH	Float (RO)	Primary side electrical energy
763A	Reserved	(T7)	1WH	Float (RO)	Primary side electrical energy
763C	Reserved	(T8)	1WH	Float (RO)	Primary side electrical energy
763E	Total reve	ersed active energy of this	1WH	Float (RO)	Primary side electrical energy
7640	Total rev	ersed active tip energy of h (T1)	1WH	Float (RO)	Primary side electrical energy
7642	Total reve	ersed active peak energy of h (T2)	1WH	Float (RO)	Primary side electrical energy
7644	Total reve	ersed active flat energy of h (T3)	1WH	Float (RO)	Primary side electrical energy
7646	Total rev	ersed active valley energy onth (T4)	1WH	Float (RO)	Primary side electrical energy
7648		versed active deep valley this month (T5)	1WH	Float (RO)	Primary side electrical energy
764A	Reserved	(T6)	1WH	Float (RO)	Primary side electrical energy
764C	Reserved	(T7)	1WH	Float (RO)	Primary side electrical energy
764E	Reserved	(T8)	1WH	Float (RO)	Primary side electrical energy
7650		Reverse total active energy (T)	1WH	Float (RO)	Primary side electrical energy
7652		Reverse tip active energy (T1)	1WH	Float (RO)	Primary side electrical energy
7654		Reverse peak active energy (T2)	1WH	Float (RO)	Primary side electrical energy
7656	History January	Reverse flat active energy (T3)	1WH	Float (RO)	Primary side electrical energy
7658	energy	Reverse valley active energy (T4)	1WH	Float (RO)	Primary side electrical energy
765A		Reverse deep valley active energy (T5)	1WH	Float (RO)	Primary side electrical energy
765C		Reserved (T6)	1WH	Float (RO)	Primary side electrical energy
765E		Reserved (T7)	1WH	Float (RO)	Primary side electrical energy
7660		Reserved (T8)	1WH	Float (RO)	Primary side electrical energy

7662	History February reverse	7674	History March reverse	7686	History April reverse	
	active energy		active energy		active energy	
7698	History May reverse active	76AA	History June reverse active	76BC	History July reverse active	
	energy		energy		energy	
76CE	History August reverse active	76E0	History September reverse	76F2	History October reverse	
	power		active energy		active power	
7704	History November reverse	7716	History December reverse			
	active power		active power			

Register (WORD)	Name	Resol ution	Data Type (Read Write Attribute)	Remarks
6600	The start time of the first period of the first set of re-rates		Int16 (RW)	High byte: hour; Byte number: minutes
6601-6609	The starting time of period 2-10 of the first set of re-rates			Ditto
6610-6619	The starting time of period 1-10 of the second set of re-rates			Ditto
6620-6629	The starting time of period 1-10 of the third set of re-rate			Ditto
6630-6639	The starting time of period 1-10 of the fourth set of repricing			Ditto
6640	The first set of rates for the first 1-2 time period rate selection		Int16 (RW)	High byte: Period 1 rate selection; Low byte: Period 2 rate selection. 0: tip energy (T1),1: peak energy (T2), 2: flat energy (T3), 3: valley energy (T4), 4: deep valley electric energy (T5), the same below.
6641	The first set of multiple rates in the 3-4 time period rate choice		Int16 (RW)	High byte: period 3 rate selection; Low byte: Period 4 rate selection.
6642	The first set of multiple rates in the 5-6 time period rate choice		Int16 (RW)	High byte: Period 5 rate selection; Low byte: Period 6 rate selection.
6643	The first set of multiple rates in the 7-8 time period rate choice		Int16 (RW)	High byte: Period 7 rate selection; Low byte: Period 8 rate selection.
6644	The first set of multiple rates in the 9-10 time period rate choice		Int16 (RW)	High byte: Period 9 rate selection; Low byte: Period 10 rate selection.
6645	The second set of multiple rates in the 1-2 time period rate choice		Int16 (RW)	High byte: Period 1 rate selection; Low byte: Period 2 rate selection.
6646	The second set of multiple rates in the 3-4 time period rate choice		Int16 (RW)	High byte: period 3 rate selection; Low byte: Period 4 rate selection.
6647	The second set of multiple rates in the 5-6 time period rate choice		Int16 (RW)	High byte: Period 5 rate selection; Low byte: Period 6 rate selection.
6648	The second set of multiple rates in the 7-8 time period rate choice		Int16 (RW)	High byte: Period 7 rate selection; Low byte: Period 8 rate selection.
6649	The second set of multiple rates in the 9-10 time period rate choice		Int16 (RW)	High byte: Period 9 rate selection; Low byte: Period 10 rate selection.
6650	The third set of multiple rates in		Int16 (RW)	High byte: Period 1 rate selection; Low byte:

	the 1-2 time period rate choice		Period 2 rate selection.
6651	The third set of multiple rates in	Int16 (RW)	High byte: period 3 rate selection; Low byte:
	the 3-4 time period rate choice		Period 4 rate selection.
6652	The third set of multiple rates in	Int16 (RW)	High byte: Period 5 rate selection; Low byte:
	the 5-6 time period rate choice		Period 6 rate selection.
6653	The third set of multiple rates in	Int16 (RW)	High byte: Period 7 rate selection; Low byte:
	the 7-8 time period rate choice		Period 8 rate selection.
6654	The third set of multiple rates in	Int16 (RW)	High byte: Period 9 rate selection; Low byte:
	the 9-10 time period rate choice		Period 10 rate selection.
6655	The forth set of multiple rates in	Int16 (RW)	High byte: Period 1 rate selection; Low byte:
	the 1-2 time period rate choice		Period 2 rate selection.
6656	The forth set of multiple rates in	Int16 (RW)	High byte: period 3 rate selection; Low byte:
	the 3-4 time period rate choice		Period 4 rate selection.
6657	The forth set of multiple rates in	Int16 (RW)	High byte: Period 5 rate selection; Low byte:
	the 5-6 time period rate choice		Period 6 rate selection.
6658	The forth set of multiple rates in	Int16 (RW)	High byte: Period 7 rate selection; Low byte:
	the 7-8 time period rate choice		Period 8 rate selection.
6659	The forth set of multiple rates in	Int16 (RW)	High byte: Period 9 rate selection; Low byte:
	the 9-10 time period rate choice		Period 10 rate selection.
6660	Time zone 1 start date	Int16 (RW)	High byte: month; Low byte: day
6661	Time zone 2 start date	Int16 (RW)	High byte: month; Low byte: day
6662	Time zone 3 start date	Int16 (RW)	High byte: month; Low byte: day
6663	Time zone 4 start date	Int16 (RW)	High byte: month; Low byte: day
6664	Time zone 5 start date	Int16 (RW)	High byte: month; Low byte: day
6665	Time zone 6 start date	Int16 (RW)	High byte: month; Low byte: day
6666	Time zone 1 & 2 rate selections	Int16 (RW)	High byte: 1st time zone muti-rate selection;
			Low byte: 2nd time zone muti-rate selection
			(same below)
			0: first set of muti-rate, 1: second set of
			muti-rate
			2: third set of muti-rate, 2: fourth set of
			muti-rate
6667	Time zone 3 and 4 rate selections	Int16 (RW)	High byte: 3rd time zone muti-rate selection;
			Low byte: 4th time zone muti-rate selection
6668	5th and 6th time zone rate	Int16 (RW)	High byte: 5th time zone muti-rate selection;
	selections		Low byte: 6th time zone muti-rate selection

11 DL/T-645 Communication Guide

It mainly describes how to use the software to control the series of instruments through the communication port. Mastering the content requires you to have a knowledge base of the DL/T645-2007 agreement and read through all the other sections of this volume to gain a comprehensive understanding of the product features and application concepts. This chapter includes: DL/T645-2007 protocol brief, communication application format, local application details and parameter address table.

11.1 DL/T645-2007 Brief description of the agreement

The instrument uses a communication protocol conforming to the DL/T645-2007 specification. The DL/T645-2007 protocol defines the check code, data, sequence, etc., which are all necessary for specific data exchange. The

DL/T645-2007 protocol uses a master-slave acknowledgment connection (half-duplex) on a single communication line, which means that signals are transmitted in opposite directions on a single communication line. First, the signal of the host computer is addressed to a unique terminal device (slave), and then the response signal from the terminal device is transmitted to the host in the opposite direction. Brief description of the agreement.

The DL/T645-2007 protocol only allows communication between the host (PC, PLC, etc.) and the terminal device, and does not allow data exchange between independent terminal devices, so that the terminal devices do not occupy the communication line when they initialize. It is limited to responding to the inquiry signal arriving at the unit.

11.2 transmission method

The transmission method refers to a series of independent data structures in a data frame and a limited rule for transmitting data. The following describes a transmission method compatible with the DL/T645-2007 protocol-RTU mode.

Bit per byte

1 start bit

8 data bits, the smallest valid bit is sent first

1 even parity

1 stop bit

Error checking and verification

11.3 protocol

When the data frame arrives at the terminal device, it enters the addressed device through a simple "port" that removes the "envelope" (data header) of the data frame, reads the data, and executes the data if there are no errors. The requested task, then it adds the data it generates to the obtained "envelope" and returns the data frame to the sender. The returned response data includes the following contents: the terminal slave address (Address), the executed command (Function), the requested data generated by the execution command (Data), and a check code (Check). No error will occur if any error occurs, or an error indication frame will be returned.

11.3.1 Data frame format

68H	A0	A1	A2	A3	A4	A5	68H	C	L	DI0	DI1	N1		Nm	CS	16H
Starter		Ad	dres	ss fi	eld		Frame start	Control code	Data length	Data iden	tification		dat	a	Check code	Terminator

a)Frame starter 68H

Identifies the beginning of a frame of data, the value is 68H

b)Address field A0~A5

The address field consists of 6 bytes (8-bit binary code) with 2 bits of BCD code per byte. The address length can be up to 12 decimal digits. These bits indicate the address of the user-specified terminal device that will receive the host data from it. The address of each terminal device must be unique, and only the addressed terminal will respond to the query containing the address. When the terminal sends back a response, the slave address data in the response tells the host which terminal is communicating with it. When the address is 9999999999999, it is the broadcast address. Valid only for special commands, such as broadcast time, broadcast freeze, etc. The broadcast command does not require a slave to answer.

When the address field is transmitted, the low byte is first and the high byte is after.

c)Control code C

The function field code tells the terminal which is being addressed which function to perform. The table below lists the function codes used in this series of instruments, as well as their meaning and function.

Code	significance	behavior
11H	Reading data	Read data from APM Series meters
91H	Read data response	APM series instrument response to read data
14H	Write data	Write data to APM

94H	Write data response	APM series instrument response to write data
D4H 或 D1H	Error response	Received data error

d) Data field (data identification and data) length L

The byte length of the data field. When reading data, $L \le 200$, when writing data, ≤ 50 , when L=0, it means no data field.

e)Data field DATA

The data field includes data identification, password, operator code, data, frame number, etc., and its structure changes with the function of the control code. When transmitting, the sender adds 33H to the byte, and the receiver subtracts 33H by byte.

f)Error check CS

The sum of the modulo 256 of all bytes from the start of the frame start to the check code, that is, the binary arithmetic sum of each byte, excluding the overflow value exceeding 256.

g) End character 16H

Identify the end of a frame of data

11.3.2 transmission

a)Leading byte

Before sending frame information, you can transmit 1 to 4 bytes of FEH to wake up the receiver.

b)Transmission order

All data items are transmitted first with the low byte and then with the high byte. The transmitted data item (except the switching amount) is the compressed BCD code of the actual data plus 33H. If the external host reads the positive active energy of the APM series meter, the meter address is 1:

Host sending: FE FE 68 01 00 00 00 00 00 68 11 04 33 33 34 33 B3 16

APM Series instrument response(15.82kWh): 68 01 00 00 00 00 00 68 91 08 33 33 34 33 B5 48 33 33 9A 16

c) Transmission response rate

Each communication is initiated by the primary station transmitting a request command frame to the slave selected by the information frame address field, and the requested slave responds according to the requirements of the control code in the command frame.

Response delay after receiving the command frame: ≤500ms

Pause time between bytes: ≤6 bytes of transmission time, when this time is exceeded, the APM series instrument considers it a new data frame

d)Error control

The byte check is even parity, and the frame check is a vertical information checksum. The receiver abandons the information frame regardless of whether an even check or a vertical information checksum error is detected, and does not respond.

e) Transmission rate

initial rate: 9600bps

set to: 1200, 2400, 4800, 9600, 19200bps

11.3.3 Data identification table

	Send a sample (using address 1 as an example, the		Return	Return data
variable name	user can set according to actual needs, the address	Return	data format	unit
variable name	high is filled with "00000000")	bytes	(secondary	
)	
Phase A voltage	68 01 00 00 00 00 00 68 11 04 33 34 34 35 B6 16	2	XXX.X	V
Phase B voltage	68 01 00 00 00 00 00 68 11 04 33 35 34 35 B7 16	2	XXX.X	V
Phase C voltage	68 01 00 00 00 00 00 68 11 04 33 36 34 35 B8 16	2	XXX.X	V

Read voltage data block	68 01 00 00 00 00 00 68 11 04 33 32 34 35 B4 16	2*3	XXX.X	V
Phase A current	68 01 00 00 00 00 00 68 11 04 33 34 35 35 B7 16	3	XXX.XXX	A
Phase B current	68 01 00 00 00 00 00 68 11 04 33 35 35 35 B8 16	3	XXX.XXX	A
Phase C current	68 01 00 00 00 00 00 68 11 04 33 36 35 35 B9 16	3	XXX.XXX	A
Read current block	68 01 00 00 00 00 00 68 11 04 33 32 35 35 B5 16	3*3	XXX.XXX	A
Total active power	68 01 00 00 00 00 00 68 11 04 33 33 36 35 B7 16	3	XX.XXXX	kW
Phase A active power	68 01 00 00 00 00 00 68 11 04 33 34 36 35 B8 16	3	XX.XXXX	kW
Phase B active power	68 01 00 00 00 00 00 68 11 04 33 35 36 35 B9 16	3	XX.XXXX	kW
Phase C active power	68 A0 00 00 00 00 00 68 11 04 33 36 36 35 BA 16	3	XX.XXXX	kW
Active power data block	68 01 00 00 00 00 00 68 11 04 33 32 36 35 B6 16	3*4	XX.XXXX	kW
Total reactive power	68 01 00 00 00 00 00 68 11 04 33 33 37 35 B8 16	3	XX.XXXX	kvar
Phase A reactive power	68 01 00 00 00 00 00 68 11 04 33 34 37 35 B9 16	3	XX.XXXX	kvar
Phase B reactive power	68 01 00 00 00 00 00 68 11 04 33 35 37 35 BA 16	3	XX.XXXX	kvar
Phase C reactive power	68 01 00 00 00 00 00 68 11 04 33 36 37 35 BB 16	3	XX.XXXX	kvar
Reactive power data block	68 01 00 00 00 00 00 68 11 04 33 32 37 35 B7 16	3*4	XX.XXXX	kvar
Total apparent power	68 01 00 00 00 00 00 68 11 04 33 33 38 35 B9 16	3	XX.XXXX	kVA
A phase apparent power	68 01 00 00 00 00 00 68 11 04 33 34 38 35 BA 16	3	XX.XXXX	kVA
B phase apparent power	68 01 00 00 00 00 00 68 11 04 33 35 38 35 BB 16	3	XX.XXXX	kVA
C phase apparent power	68 01 00 00 00 00 00 68 11 04 33 36 38 35 BC 16	3	XX.XXXX	kVA
Apparent power block	68 01 00 00 00 00 00 68 11 04 33 32 38 35 B8 16	3*4	XX.XXXX	kVA
Power factor	68 01 00 00 00 00 00 68 11 04 33 33 39 35 BA 16	2	X.XXX	
Phase A power factor	68 01 00 00 00 00 00 68 11 04 33 34 39 35 BA 16	2	X.XXX	
Phase B power factor	68 01 00 00 00 00 00 68 11 04 33 35 39 35 BA 16	2	X.XXX	
Phase C power factor	68 01 00 00 00 00 00 68 11 04 33 36 39 35 BA 16	2	X.XXX	
Power factor block	68 01 00 00 00 00 00 68 11 04 33 32 39 35 B9 16	2*4	X.XXX	
Total active energy	68 01 00 00 00 00 00 68 11 04 33 33 33 33 B2 16	4	XXXXXX. XX	kWh
Positive active energy	68 01 00 00 00 00 00 68 11 04 33 33 34 33 B3 16	4	XXXXXX. XX	kWh
Reverse active energy	68 01 00 00 00 00 00 68 11 04 33 33 35 33 B4 16	4	XXXXXX.	kWh
Inductive reactive energy	68 01 00 00 00 00 00 68 11 04 33 33 36 33 B5 16	4	XXXXXXX.	kvarh
Capacitive reactive energy	68 01 00 00 00 00 00 68 11 04 33 33 37 33 B6 16	4	XXXXXXX.	kvarh
Four quadrant energy data block	68 01 00 00 00 00 00 68 11 04 33 33 32 33 B1 16	4*5		kWh/ kvarh
Positive active multiple rate total energy	68 01 00 00 00 00 00 68 11 04 33 33 34 33 B3 16	4	XXXXXXX.	kWh
Positive active rate	68 01 00 00 00 00 00 68 11 04 33 34 34 33 B4 16	4	XXXXXXX.	kWh
Positive active complex rate peak energy	68 01 00 00 00 00 00 68 11 04 33 35 34 33 B5 16	4	XXXXXXX.	kWh
Positive active multi-rate Flat electric energy	68 01 00 00 00 00 00 68 11 04 33 36 34 33 B6 16	4	XXXXXXX.	kWh
Positive active multi-rate Valley	68 01 00 00 00 00 00 68 11 04 33 37 34 33 B7 16	4	XXXXXXX.	kWh
		•		

power			XX	
Current positive active energy data block	68 01 00 00 00 00 00 68 11 04 33 32 34 33 B2 16	4*5	XXXXXX. XX	kWh
Last January, positive reactive power, total energy	68 01 00 00 00 00 00 68 11 04 34 33 34 33 B4 16	4	XXXXXX. XX	kWh
Last January, positive reactive rate, sharp energy	68 01 00 00 00 00 00 68 11 04 34 34 34 33 B5 16	4	XXXXXX. XX	kWh
Positive power rate peak power in January	68 01 00 00 00 00 00 68 11 04 34 35 34 33 B6 16	4	XXXXXX. XX	kWh
Last January, positive reactive rate, flat energy	68 01 00 00 00 00 00 68 11 04 34 36 34 33 B7 16	4	XXXXXX. XX	kWh
Last January, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 34 37 34 33 B8 16	4	XXXXXX. XX	kWh
Positive active energy data block in January	68 01 00 00 00 00 00 68 11 04 34 32 34 33 B3 16	4*5	XXXXXX. XX	kWh
Last February, positive reactive power, total energy	68 01 00 00 00 00 00 68 11 04 35 33 34 33 B5 16	4	XXXXXX. XX	kWh
Last February, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 35 34 34 33 B6 16	4	XXXXXX. XX	kWh
Last February, positive active rate, peak energy	68 01 00 00 00 00 00 68 11 04 35 35 34 33 B7 16	4	XXXXXX. XX	kWh
Last February, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 35 36 34 33 B8 16	4	XXXXXX. XX	kWh
Last February, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 35 37 34 33 B9 16	4	XXXXXX. XX	kWh
Last February Positive active energy data block	68 01 00 00 00 00 00 68 11 04 35 32 34 33 B4 16	4*5	XXXXXX. XX	kWh
Last March, the positive energy rate, total energy	68 01 00 00 00 00 00 68 11 04 36 33 34 33 B6 16	4	XXXXXX. XX	kWh
Last March, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 36 34 34 33 B7 16	4	XXXXXX. XX	kWh
Last March, positive active rate peak energy	68 01 00 00 00 00 00 68 11 04 36 35 34 33 B8 16	4	XXXXXX. XX	kWh
Last March, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 36 36 34 33 B9 16	4	XXXXXX. XX	kWh
Last March, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 36 37 34 33 BA 16	4	XXXXXX. XX	kWh
Last March Positive active energy data block	68 01 00 00 00 00 00 68 11 04 36 32 34 33 B5 16	4*5	XXXXXX. XX	kWh
Last April, the positive energy rate total energy	68 01 00 00 00 00 00 68 11 04 37 33 34 33 B7 16	4	XXXXXX. XX	kWh
Last April, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 37 34 34 33 B8 16	4	XXXXXX. XX	kWh
	68 01 00 00 00 00 00 68 11 04 37 35 34 33 B9 16	4	XXXXXX. XX	kWh
	68 01 00 00 00 00 00 68 11 04 37 36 34 33 BA 16	4	XXXXXX. XX	kWh

Last April, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 37 37 34 33 BB 16	4	XXXXXX. XX	kWh
Last April Positive active energy data block	68 01 00 00 00 00 00 68 11 04 37 32 34 33 B6 16	4*5	XXXXXX. XX	kWh
Last May, positive energy rate, total energy	68 01 00 00 00 00 00 68 11 04 38 33 34 33 B8 16	4	XXXXXX.	kWh
Last May, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 38 34 34 33 B9 16	4	XXXXXX. XX	kWh
	68 01 00 00 00 00 00 68 11 04 38 35 34 33 BA 16	4	XXXXXX. XX	kWh
Last May, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 38 36 34 33 BB 16	4	XXXXXX. XX	kWh
Last May, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 38 37 34 33 BC 16	4	XXXXXX. XX	kWh
Last May Positive active energy data block	68 01 00 00 00 00 00 68 11 04 38 32 34 33 B7 16	4*5	XXXXXX. XX	kWh
Last June, the positive energy rate total energy	68 01 00 00 00 00 00 68 11 04 39 33 34 33 B9 16	4	XXXXXX. XX	kWh
Last June, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 39 34 34 33 BA 16	4	XXXXXX. XX	kWh
Last June, positive active rate peak energy	68 01 00 00 00 00 00 68 11 04 39 35 34 33 BB 16	4	XXXXXX. XX	kWh
Last June, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 39 36 34 33 BC 16	4	XXXXXX. XX	kWh
Last June, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 39 37 34 33 BD 16	4	XXXXXX. XX	kWh
Last June Positive active energy data block	68 01 00 00 00 00 00 68 11 04 39 32 34 33 B8 16	4*5	XXXXXX. XX	kWh
Last July, the positive energy rate total energy	68 01 00 00 00 00 00 68 11 04 3A 33 34 33 BA 16	4	XXXXXX. XX	kWh
Last July, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 3A 34 34 33 BB 16	4	XXXXXX. XX	kWh
Last July, positive active rate peak energy	68 01 00 00 00 00 00 68 11 04 3A 35 34 33 BC 16	4	XXXXXX. XX	kWh
Last July, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 3A 36 34 33 BD 16	4	XXXXXX. XX	kWh
Last July, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 3A 37 34 33 BE 16	4	XXXXXX. XX	kWh
Last July Positive active energy data block	68 01 00 00 00 00 00 68 11 04 3A 32 34 33 B9 16	4*5	XXXXXX. XX	kWh
Last August, the positive energy rate total energy	68 01 00 00 00 00 00 68 11 04 3B 33 34 33 BB 16	4	XXXXXX. XX	kWh
Last August, positive active rate, sharp energy	68 01 00 00 00 00 00 68 11 04 3B 34 34 33 BC 16	4	XXXXXX. XX	kWh
Last August, positive active rate peak energy	68 01 00 00 00 00 00 68 11 04 3B 35 34 33 BD 16	4	XXXXXX. XX	kWh
Last August, positive active rate,	68 01 00 00 00 00 00 68 11 04 3B 36 34 33 BE 16	4	XXXXXX.	kWh

flat energy			XX	
	68 01 00 00 00 00 00 68 11 04 3B 37 34 33 BF 16		XXXXXX.	kWh
valley energy		4	XX	
	68 01 00 00 00 00 00 68 11 04 3B 32 34 33 BA 16		XXXXXX.	kWh
data block		4*5	XX	
	68 01 00 00 00 00 00 68 11 04 3C 33 34 33 BC 16		XXXXXX.	kWh
rate total energy		4	XX	
Last September, positive active	68 01 00 00 00 00 00 68 11 04 3C 34 34 33 BD 16		XXXXXX.	kWh
rate, sharp energy		4	XX	
	68 01 00 00 00 00 00 68 11 04 3C 35 34 33 BE 16		XXXXXX.	kWh
peak energy		4	XX	
	68 01 00 00 00 00 00 68 11 04 3C 36 34 33 BF 16		XXXXXX.	kWh
rate, flat energy	00 01 00 00 00 00 00 00 11 01 30 30 31 33 31 10	4	XX	KWII
Last September, positive active	68 01 00 00 00 00 00 68 11 04 3C 37 34 33 C0 16		XXXXXX.	kWh
rate, valley energy	00 01 00 00 00 00 00 00 11 01 36 37 31 33 60 10	4	XX	KWII
Last September Positive active	68 01 00 00 00 00 00 68 11 04 3C 32 34 33 BB 16		XXXXXXX.	kWh
energy data block	00 01 00 00 00 00 00 00 11 01 30 32 3 1 33 33 10	4*5	XX	KWII
Last October, the positive energy	68 01 00 00 00 00 00 68 11 04 3D 33 34 33 BD 16		XXXXXXX.	kWh
rate total energy	00 01 00 00 00 00 00 00 11 04 35 35 34 33 55 10	4	XX	KWII
Last October, positive active rate,	68 01 00 00 00 00 00 68 11 04 3D 34 34 33 BE 16		XXXXXXX.	kWh
sharp energy	00 01 00 00 00 00 00 00 11 04 3D 34 34 33 BE 10	4	XX	KWII
Last October, positive active rate	68 01 00 00 00 00 00 68 11 04 3D 35 34 33 BF 16		XXXXXXX.	kWh
peak energy	08 01 00 00 00 00 00 08 11 04 3D 33 34 33 D1 10	4	XX	KWII
	68 01 00 00 00 00 00 68 11 04 3D 36 34 33 C0 16		XXXXXXX.	kWh
flat energy	08 01 00 00 00 00 00 00 11 04 3D 30 34 33 C0 10	4	XX	KVVII
	68 01 00 00 00 00 00 68 11 04 3D 37 34 33 C1 16		XXXXXXX.	kWh
valley energy	08 01 00 00 00 00 00 08 11 04 3D 37 34 33 C1 10	4	XXXXXX. XX	K VV II
Last October, Positive active	68 01 00 00 00 00 00 68 11 04 3D 32 34 33 BC 16		XXXXXXX.	kWh
energy data block	08 01 00 00 00 00 00 00 11 04 3D 32 34 33 BC 10	4*5	XX	KWII
Last November, the positive energy	68 01 00 00 00 00 00 68 11 04 3E 33 34 33 BE 16		XXXXXXX.	kWh
rate total energy	00 01 00 00 00 00 00 11 0 102 00 0 00 22 10	4	XXXXXX. XX	K VV II
	68 01 00 00 00 00 00 68 11 04 3E 34 34 33 BF 16		XXXXXXX.	kWh
sharp energy	08 01 00 00 00 00 00 08 11 04 3E 34 34 33 BF 10	4	XXXXXX.	K W II
	68 01 00 00 00 00 00 68 11 04 3E 35 34 33 C0 16		XXXXXXX.	kWh
peak energy	08 01 00 00 00 00 00 08 11 04 3E 33 34 33 C0 10	4	XXXXXX.	K W II
	68 01 00 00 00 00 00 68 11 04 3E 36 34 33 C1 16		XXXXXXX.	kWh
flat energy	08 01 00 00 00 00 00 08 11 04 3E 30 34 33 C1 10	4	XX XX	K W II
	68 01 00 00 00 00 00 68 11 04 3E 37 34 33 C2 16		XXXXXXX.	kWh
valley energy	08 01 00 00 00 00 00 08 11 04 3E 37 34 33 C2 10	4	XXXXXX.	K W II
	68 01 00 00 00 00 00 68 11 04 3E 37 34 33 BD 16		XXXXXXX.	kWh
·	08 01 00 00 00 00 00 08 11 04 3E 37 34 33 BD 10	4*5	XX XX	K W II
energy data block			ΛΛ	
Last December, the positive energy	68 01 00 00 00 00 00 68 11 04 3F 33 34 33 BF 16	4	XXXXXX.	kWh
rate total energy		 -	XX	
Last December, positive active rate,	68 01 00 00 00 00 00 68 11 04 3F 34 34 33 C0 16	4	XXXXXX.	kWh
sharp energy		 -	XX	
Last December, positive active rate	68 01 00 00 00 00 00 68 11 04 3F 35 34 33 C1 16	4	XXXXXX.	kWh

peak energy			XX	
Last December, positive active rate, flat energy	68 01 00 00 00 00 00 68 11 04 3F 36 34 33 C2 16	4	XXXXXX. XX	kWh
Last December, positive active rate, valley energy	68 01 00 00 00 00 00 68 11 04 3F 37 34 33 C3 16	4	XXXXXX. XX	kWh
Last December, Positive active energy data block	68 01 00 00 00 00 00 68 11 04 3F 32 34 33 BE 16	4*5	XXXXXX. XX	kWh
Data	68 01 00 00 00 00 00 68 11 04 34 34 33 37 B8 16	4	DWW	Year, month and day
Time	68 01 00 00 00 00 00 68 11 04 35 34 33 37 B9 16	3	HHFFMM	Hour, minute, second
Positive active maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 34 34 B4 16	8	XX.XXXX YYMMD Dhhmm	kW Year, month, day Hour, minute
Reverse active maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 35 34 B5 16	8	XX.XXXX YYMMD Dhhmm	Ditto
Perceptual reactive maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 36 34 B6 16	8	XX.XXXX YYMMD Dhhmm	
Capacitive reactive maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 37 34 B7 16	8	XX.XXXX YYMMD Dhhmm	
Forward apparent maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 3C 34 BC 16	8	XX.XXXX YYMMD Dhhmm	
Reverse apparent maximum demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 33 33 3D 34 BD 16	8	XX.XXXX YYMMD Dhhmm	
The maximum active demand and time of occurrence in the first settlement date	68 01 00 00 00 00 00 68 11 04 34 33 34 34 B5 16	8	XX.XXXX YYMMD Dhhmm	
Reverse active maximum demand and time of occurrence on the first settlement date	68 01 00 00 00 00 00 68 11 04 34 33 35 34 B6 16	8	XX.XXXX YYMMD Dhhmm	
Maximum demand and time of inductive reactive power on the first settlement date	68 01 00 00 00 00 00 68 11 04 34 33 36 34 B7 16	8	XX.XXXX YYMMD Dhhmm	
Capacitive reactive maximum demand and time of occurrence on the first settlement date	68 01 00 00 00 00 00 68 11 04 34 33 37 34 B8 16	8	XX.XXXX YYMMD Dhhmm	
The maximum demand and time of occurrence in the positive view on	68 01 00 00 00 00 00 68 11 04 34 33 3C 34 BD 16	8	XX.XXXX YYMMD	

the first settlement date			Dhhmm	
The maximum demand and time of	68 01 00 00 00 00 00 68 11 04 34 33 3D 34 BE 16		XX.XXXX	
occurrence in the reverse view on		8	YYMMD	
the first settlement date			Dhhmm	
The maximum active demand and	68 01 00 00 00 00 00 68 11 04 35 33 34 34 B6 16		XX.XXXX	
time of occurrence in the last 2		8	YYMMD	
settlement days			Dhhmm	
	68 01 00 00 00 00 00 68 11 04 35 33 34 16		XX.XXXX	
		8	YYMMD	
			Dhhmm	
The maximum active demand and	68 01 00 00 00 00 00 68 11 04 3F 33 34 34 C0 16		XX.XXXX	kW
time of occurrence on the 12th			YYMMD	Year,
settlement date		8	Dhhmm	month, day
				Hour,
				minute
	68 01 00 00 00 00 00 68 11 04 3F 33 34 16		XX.XXXX	Ditto
		8	YYMMD	
			Dhhmm	
Phase A voltage 1st harmonic	68 01 00 00 00 00 00 68 11 04 34 34 3D 35 C0 16	2	XX.XX	%
content		2		
Phase A voltage 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 34 3D 35 C1 16	2	XX.XX	%
content		2		
Phase A voltage 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 34 3D 35 C0 16	2	XX.XX	%
content		2		
Phase A voltage 4th harmonic	37	2	XX.XX	%
content	CS 16	2		
Phase A voltage 21 harmonic	68 01 00 00 00 00 00 68 11 04 48 34 3D 35 D4 16	2	XX.XX	%
content		2		
Phase B voltage 1st harmonic	68 01 00 00 00 00 00 68 11 04 34 35 3D 35 C1 16	2	XX.XX	%
content		2		
B phase voltage 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 35 3D 35 C2 16	2	XX.XX	%
content		2		
B phase voltage 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 35 3D 35 C2 16	2	XX.XX	%
content		2		
B phase voltage 4th harmonic	37	2	XX.XX	%
content	CS 16	2		
B phase voltage 4th harmonic	68 01 00 00 00 00 00 68 11 04 48 35 3D 35 D5 16	2	XX.XX	%
content		2		
Phase C voltage 1st harmonic	68 01 00 00 00 00 00 68 11 04 34 36 3D 35 C2 16	2	XX.XX	%
content		2		
phase c voltage 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 36 3D 35 C3 16	2	XX.XX	%
content		2		
Phase C voltage 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 36 3D 35 C4 16	2	XX.XX	%
content		2		
Concil	00			

Phase c voltage 4th harmonic	37		XX.XX	%
content	CS 16	2	2171.7171	70
content	C5 10			
Phase C voltage 21 harmonic	68 01 00 00 00 00 00 68 11 04 48 36 3D 35 D6 16		XX.XX	%
content	08 01 00 00 00 00 00 08 11 04 48 30 3D 33 D0 10	2	ΛΛ.ΛΛ	/0
Phase A current 1st harmonic	68 01 00 00 00 00 00 68 11 04 34 34 3E 35 C1 16		XX.XX	%
content	08 01 00 00 00 00 00 08 11 04 34 34 3E 33 C1 10	2	ΛΛ.ΛΛ	/0
phase A current 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 34 3E 35 C2 16		XX.XX	%
	08 01 00 00 00 00 00 08 11 04 33 34 3E 33 C2 10	2	ΛΛ.ΛΛ	70
content	(9.01.00.00.00.00.00.00.11.04.26.24.2E.25.62.16		VV VV	%
Phase A current 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 34 3E 35 C3 16	2	XX.XX	70
content	27		XX XX	0/
Phase A current 4th harmonic	37	2	XX.XX	%
content	CS 16			
				24
Phase A current 21 harmonic	68 01 00 00 00 00 00 68 11 04 48 34 3E 35 D5 16	2	XX.XX	%
content				
Phase B current 1st harmonic	68 01 00 00 00 00 00 68 11 04 34 35 3E 35 C2 16	2	XX.XX	%
content				
B phase current 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 35 3E 35 C3 16	2	XX.XX	%
content				
Phase B current 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 35 3E 35 C4 16	2	XX.XX	%
content				
B phase current 4th harmonic	37	2	XX.XX	%
content	CS 16			
Phase B current 21 harmonic	68 01 00 00 00 00 00 68 11 04 48 35 3E 35 D6 16	2	XX.XX	%
content		2		
Phase C current 1 harmonic conte	ent 68 01 00 00 00 00 00 68 11 04 34 36 3E 35 C3 16	2	XX.XX	%
Phase C current 2nd harmonic	68 01 00 00 00 00 00 68 11 04 35 36 3E 35 C4 16	2	XX.XX	%
content		2		
Phase C current 3rd harmonic	68 01 00 00 00 00 00 68 11 04 36 36 3E 35 C5 16	_	XX.XX	%
content		2		
Phase C current 4th harmonic	37	2	XX.XX	%
content	CS 16	2		
Phase C current 21 harmonic	68 01 00 00 00 00 00 68 11 04 48 36 3E 35 D7 16	_	XX.XX	%
content		2		
Phase A voltage waveform	68 01 00 00 00 00 00 68 11 04 33 34 3B 35 BD 16		XX.XX	%
distortion		2		
B phase voltage waveform	68 01 00 00 00 00 00 68 11 04 33 35 3B 35 BE 16		XX.XX	%
distortion		2		
Phase C voltage waveform	68 01 00 00 00 00 00 68 11 04 33 36 3B 35 BF 16		XX.XX	%
distortion	11 /2 11 11 11 11 11 11 11 11 11 11 11 11 11	2		
Phase A current waveform	68 01 00 00 00 00 00 68 11 04 33 34 3C 35 BE 16		XX.XX	%
distortion	55 57 56 55 55 56 55 56 55 5E 10	2	2121.2121	
Phase B current waveform	68 01 00 00 00 00 00 68 11 04 33 35 3C 35 BF 16	2	XX.XX	%
I hase D carrent wavefulli	00 01 00 00 00 00 00 00 11 0 1 33 33 3C 33 DI 10		4141.71/1	/0

distortion				
Phase C current waveform distortion	68 01 00 00 00 00 00 68 11 04 33 36 3C 35 C0 16	2	XX.XX	%
(previous time) timed freezing time	68 01 00 00 00 00 00 68 11 04 34 33 33 38 B8 16	5	YYMMD Dhhmm	Year, month and day
(1 time) timed to freeze positive active energy	68 01 00 00 00 00 00 68 11 04 34 34 33 38 B9 16	4*5	XXXXXX. XX	kWh
(1 time) timed frozen reverse active energy	68 01 00 00 00 00 00 68 11 04 34 35 33 38 BA 16	4*5	XXXXXX. XX	kWh
(1 time) Timing freeze positive active demand and time of occurrence	68 01 00 00 00 00 00 68 11 04 34 3C 33 38 C1 16	8	XX.XXXX YYMMD Dhhmm	kW Year, month and day
(1 time) Timing freeze reverse active demand and time	68 01 00 00 00 00 00 68 11 04 34 3D 33 38 C2 16	8	XX.XXXX YYMMD Dhhmm	
(Last 1) timed frozen variable data	68 01 00 00 00 00 00 68 11 04 34 43 33 38 C8 16	3*8	kW kW kW kvar kvar kvar	Total active power Phase A active power Phase B active power Phase C active power Total reactive power Phase A reactive power Phase B reactive power Phase B reactive power Phase C reactive power Phase C reactive power
(Previous 2) timing freezing time	68 01 00 00 00 00 00 68 11 04 35 33 33 38 B9 16	5	YYMMD Dhhmm	Year, month and day
	68 01 00 00 00 00 00 68 11 04 35 33 38 16			-
(previous 3 times) timing freezing time	68 01 00 00 00 00 00 68 11 04 36 33 33 38 BA 16	5	YYMMD Dhhmm	Year, month and

				day
•••	68 01 00 00 00 00 00 68 11 04 36 33 38 16			
(previous 12 times) timing freezing	68 01 00 00 00 00 00 68 11 04 3F 33 33 38 C3 16		YYMMD	Year,
time		5	Dhhmm	month and
				day
	68 01 00 00 00 00 00 68 11 04 36 33 38 16			
(previous time) instantaneous	68 01 00 00 00 00 00 68 11 04 34 33 34 38 B9 16		YYMMD	Year,
freezing time		5	Dhhmm	month and
				day
(last time) freeze forward active	68 01 00 00 00 00 00 68 11 04 34 34 34 38 BA 16	4 % 5	XXXXXX.	1 3371
energy instantaneously		4*5	XX	kWh
(last time) freeze reverse active	68 01 00 00 00 00 00 68 11 04 34 35 34 38 BB 16	4 % 5	XXXXXX.	1 3371
energy instantaneously		4*5	XX	kWh
(1 time) instantaneous freezing	68 01 00 00 00 00 00 68 11 04 34 3C 34 38 C2 16		XX.XXXX	kW
positive active demand and time of			YYMMD	Year,
occurrence		8	Dhhmm	month
				day,hour,
				miunte
(1 time) instantaneous freezing	68 01 00 00 00 00 00 68 11 04 34 3D 34 38 C3 16		XX.XXXX	kW
reverse active demand and time of			YYMMD	Year,
occurrence		8	Dhhmm	month
				day,hour,
				miunte
(1 time) instantaneous freeze	68 01 00 00 00 00 00 68 11 04 34 43 34 38 C9 16			Total active
variable data				power
				Phase A
				active
				power
				Phase B
				active
			1.337	power
			kW	Phase C
			kW	active
			kW	power
		3*8	kW	Total
			kvar	reactive
			kvar	power
			kvar	Phase A
			kvar	reactive
				power
				Phase B
				reactive
				power
				Phase C
				reactive
				power

(2 times) instantaneous freeze time	68 01 00 00 00 00 00 68 11 04 35 33 34 38 BA 16		YYMMD	Year,
		5	Dhhmm	month and
				day
	68 01 00 00 00 00 00 68 11 04 35 34 38 16			
(Last 3 times) instantaneous	68 01 00 00 00 00 00 68 11 04 36 33 34 38 BB 16		YYMMD	Year,
freezing time		5	Dhhmm	month and
				day
	68 01 00 00 00 00 00 68 11 04 36 34 38 16			
(Last 12 times) instantaneous	68 01 00 00 00 00 00 68 11 04 3F 33 34 38 C4 16		YYMMD	Year,
freezing time		5	Dhhmm	month and
				day
	68 01 00 00 00 00 00 68 11 04 3F 34 38 16			

12 Profibus-DP guide

12.1 Profibus-DP Protocol overview

This chapter briefly introduces the Profibus-DP protocol. If you are familiar with this section, you can directly read the communication configuration of Section 12.2.

12.1.1 Profibus-DP Introduction

Profuse is a fieldbus solution integrating H1 (process) and H2 (factory automation). It is an international, open fieldbus standard and one of the eight fieldbuses in the international standard IEC61158. Profibus can spread digital automation equipment from low-level (sensor/actuator) to intermediate-level execution level (cell level). According to the application characteristics and different needs of users, Profibus provides three compatible version communication protocols:FMS , PA and DP.

Profibus-DP Used for communication between unit level control devices and distributed I/O in automation systems.

Profibus-DP Using Layer 1, Layer 2 and User Interface layers, Layers 3-7 are unused, and this streamlined architecture ensures high-speed data transfer. The direct data link mapping program DDLM provides access to Layer 2. The user interface specifies the application functions of the device, the behavior of the Profibus-DP system and the device. Profibus-DP is especially suitable for communication between PLCs and on-site hierarchical I/O devices. The communication between the master stations is the token mode, the master-slave mode between the master station and the slave station, and a mixture of the two methods.

12.1.2 Profibus-DP physical layer

12.1.2.1 Transmission medium.

PROFIBUS-DP transmission technology adopts RS485 transmission, and the transmission medium can select two types of wires: type A and type B, A is a shielded twisted pair, and B is a common twisted pair. However, in the EN50 170 standard, the type A wire is specified, and the type A has a larger extended length than the type B, as shown in Table 6.

Table6: Line A Line B Description

Cable parameter	A type	B type
Characteristic impedance(Ω)	135~165Ω	100~130Ω
	$(f=3MHz\sim20MHz)$	(f>100kHz)

Unit length capacitance(PF/m)	<30pF/m	<60pF/m
Loop resistance(Ω/km)	≤110Ω/km	-
Core cross-sectional area(mm2)	≥0.34mm2(22 AWG)	≥0.22mm2(22 AWG)

12.1.2.2 Transmission distance

The standard Profibus-DP supports the following transmission rates: (unit: kbps) 9.6, 19.2, 31.25, 45.45, 93.75, 187.5, 500, 1500, 3000, 6000, 12000. The input data and output data of each DP slave are up to 244B. When using shielded twisted pair cable, the longest communication distance is 9.6km (requires additional relay), and the maximum length is 90km when using fiber optic cable.

The maximum cable length of each segment of Profibus-DP is related to the transmission rate. Different media, different baud rates, and different distances that signals can be transmitted are shown in Table 7.

Table 7: Transmission rate and distance relationship table

Baud	9.6	19.2	93.75	187.5	500	1500	3000	6000	12000
rate									
kbps/s									
(Line A)	1200	1200	1200	1000	400	200	200	100	100
cable									
length m									
(Line B)	1200	1200	1200	600	200	Not	Not	Not	Not
cable						recommended	recommended	recommended	recommended
length m									

Note: This transmission distance refers to the distance without repeaters (repeaters). In addition, the transmission distance is a theoretical value, and the actual transmission distance is also affected by the on-site environment.

12.1.2.3 PROFIBUS-DP Bus network structure

PROFIBUS supports bus, star and tree topologies. A bus topology, as shown in Figure 1. The standard Profibus-DP system can connect up to 127 stations (station numbers from 0 to 126, without repeaters). PROFIBUS supports repeater connections. If a repeater is used, the cable length and the number of connected stations can be increased.PROFIBUS

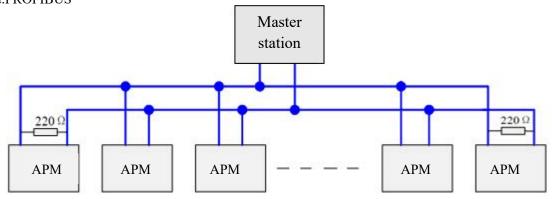


图 1 DP Bus topology

According to the EIA RS485 standard, in order to minimize cable reflection and ensure the noise level defined on the data line, at each end of the data transmission cable, a terminating resistor connected as follows must be used to terminate a network segment. The bus terminator is shown in Figure 2.

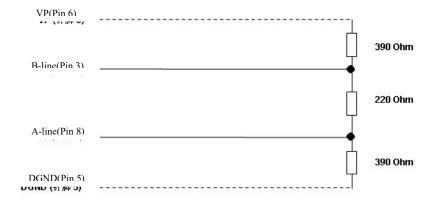


Figure 2 PROFIBUSCable terminator for cable (pin number of 9-pin D-type connector)

Profibus's bus terminator consists of a pull-up resistor and a pull-down resistor. When there is no station transmitting data on the bus (ie idle time), these two resistors force different state voltages to a certain value, thus ensuring that there is on the bus. A certain idle potential. The station designated as the terminating bus (common with the bus terminator) needs to be added to the "terminator", also known as the active terminal. To achieve impedance matching and enhance anti-interference ability. For the A-type cable, connect 220Ω active termination resistor.

The above information is for reference only. Due to the high content of Profibus-DP, please refer to the PROFIBUS installation related specifications for details.

12.2 Profibus Communication function configuration

12.2.1 Profibus Communication variable table

When communicating with the Profibus protocol, the APM series programmable smart meter needs to use the communication variables of this document. Chapter 8 Communication Description Section is invalid.

APM series multi-function electrical measuring instrument, its communication protocol is developed according to DPV0. DPV0 is a periodic data exchange, that is, in each DP cycle, the exchanged data is periodic data.

The input data is: the response data fed back to the DP master by the multi-function electrical measuring instrument (APM series meter \rightarrow DP master station).

The output data is: the DP master sends to the multi-function electrical measuring instrument (DP master \rightarrow APM series instrument), the instrument without switching output function (ie no DO function), no output data.

The processing of the cyclic data is done in the PLC by programming the input data and the output data. The length of the input and output exchange data depends on the hardware configuration GSD file type.

- (1) Profibus input data address table, as shown in Table 3. Its high byte is first and the low byte is after. For example, [2][3], [2] is the high byte (high 8 bits), [3] is the low byte (lower 8 bits), and so on.
- (2) If you want to set the APM series instrumentation parameters, you need to refer to Chapter 7 for manual setting, or refer to Chapter 8 for setting by modbus-rtu protocol. You can not use Profibus remote operation setting.
- (3) After the instrument is powered on, if the instrument slave address is changed (address setting value range 1~126), the instrument needs to be powered on again, and the changed slave address can be valid (this function follows the PROFIBUS-DP protocol).
- (4) After Profibus communication, the baud rate is adaptive from 9.6 kbit/s to 12000 kbit/s, and no baud rate is required.

APM Profibus Communication variable table

	ous Communication variable table				
Input data Address table	parameter name	remark		type	word
[00][01] [02][03]	Output switch state DO	[01]: Low 8 bits Bit7-Bit2:reserved Bit0: D01 Output s Bit1: D02 Output s So on	Bit7-Bit2:reserved Bit0: D01 Output switch quantity 1 Bit1: D02 Output switch quantity 2		
[04][05] [06][07]	Input switch state DI	Bit1: DI2 Output s Bit2: DI3 Output s Bit3: DI4 Output s So on	Bit0: DI1 Output switch quantity 1 Bit1: DI2 Output switch quantity 2 Bit2: DI3 Output switch quantity 3 Bit3: DI4 Output switch quantity 4 So on Bit31: DI32 DO32 Output switch quantity 32		
[8][9]	Phase voltage Uan	Secondary side		1 word	5
[10][11]	Phase voltage Ubn	Secondary side		1 word	6
[12][13]	Phase voltage Ucn	Secondary side	Voltage decimal point: 1	1 word	7
[14][15]	Phase voltage Uab	Secondary side	16-bit unsigned	1 word	8
[16][17]	Line voltage Ubc	Secondary side		1 word	9
[18][19]	Line voltage Uca	Secondary side		1 word	10
[20][21]	Phase current Ia	Secondary side		1 word	11
[22][23]	Phase current Ib	Secondary side	Current decimal point	1 word	12
[24][25]	Phase current Ic	Secondary side	number: 3 16-bit unsigned	1 word	13
[26][27]	Neutral current	Secondary side		1 word	14
[28][29] [30][31]	Total active power P total	Secondary side	Active power,	2 word	15、16
[32][33] [34][35]	Total reactive power Q total	Secondary side	Reactive power, inspecting power	2 word	17、18
[36][37] [38][39]	Total apparent power S	Secondary side	Decimal points: 2 32-bit signed	2 word	19、20

[40][41]	Power factor	Secondary side	Decimal points: 3 16-bit signed	1 word	21
[42][43]	frequency	Secondary side	Decimal points: 2 16-bit unsigned	2 word	22
[44][45]	Phase A current total harmonic distortion rate	A phase current tot Decimal points: 2 (16-bit unsigned)	tal harmonic content;	1 word	23
[46][47]	Phase B current total harmonic distortion rate	The total harmo current; Decimal points: 2 (16-bit unsigned)	nic content of phase B	1 word	24
[48][49]	Phase C current total harmonic distortion rat	C phase current to Decimal points: 2 (16-bit unsigned)	tal harmonic content;	1 word	25
[50][51]	Phase A voltage total harmonic distortion rate	A phase voltage to Decimal points: 2 (16-bit unsigned)	tal harmonic content;	1 word	26
[52][53]	Phase B voltage total harmonic distortion rate	B phase voltage to Decimal points: 2 (16-bit unsigned)	tal harmonic content;	1 word	27
[54][55]	Phase C voltage total harmonic distortion rate	C phase voltage to Decimal points: 2 (16-bit unsigned)	1 word	28	
[56][57] [58][59]	Positive active energy	Secondary side EPI		2 word	29、30
[60][61] [62][63]	Reverse active energy	Secondary side EPE	Secondary side electrical energy	2 word	31、32
[64][65] [66][67]	Positive reactive energy	Secondary side EQL	Decimal points: 3 32-bit signed	2 word	33、34
[68][69] [70][71]	Reverse reactive energy	Secondary side EQC		2 word	35、36
[72][73] [74][75]	Positive total active energy	Secondary side ele Decimal points: 3	ctrical energy	2 word	37、38
[76][77] [78][79]	Positive tip active energy	32-bit signed		2 word	39、40
[80][81] [82][83]	Positive peak active energy			2 word	41、42
[84][85] [86][87]	Positive flat active energy			2 word	43、44
[88][89] [90][91]	Positive valley active energy			2 word	45、46
[92][93]	AI1	Analoginavt		1 word	47
[94][95]	AI2	Analog input Decimal points: 3		1 word	48
[96][97]	AI3	16-bit unsigned		1 word	49

[98][99]	AI4		1 word	50
[100][101]	AI5		1 word	51
[102][103]	Secondary current value	Secondary current (1A or 5A) Decimal points: 0 16-bit unsigned	1 word	52
[104][105]	Secondary side voltage value	Secondary side voltage (100V, 110V, 400V, 690V) Decimal points: 0 16-bit unsigned	1 word	53
[106][107]	Primary current value	Primary current (1-32760A) Decimal points: 0 16-bit unsigned	1 word	54
[108][109]	Primary side voltage value	Primary side voltage (100V-1200KV) Decimal points: 0 32-bit unsigned	2 word	55、56
[110][1111]	Secondary side neutral current value	Secondary current (1A or 5A) Decimal points: 0 16-bit unsigned	1 word	57
[112][113]	Primary side neutral current value	Primary current (1-32760A) Decimal points: 0 16-bit unsigned	1 word	58

(5)Output parameter 1 word (DP master → APM series meter), configuration table is as follows:

outpu	parameter name	Numerical range	Remarks
[00][01]	Control(word)	01]Low 8 digits Bit0: DO1 Bit1: DO2 Bit2-Bit7: Reserved	0: disconnect 1: closure
		[00]High 8 Bit15: permission modification enabled Bit14-Bit8: Reserved	When this bit is 1, it is valid for the operation of bit0 and bit1. When 0, the operation is invalid.

Note: PROFBUS-DP V0 is a cyclic data exchange. It should be used with caution for control information to avoid damage caused by repeated settings and loop settings

Example: If you want to operate on the DO switch, you need to operate according to the current DO state. Assume that the current state of D0 is: DO1 is closed, D02 is off. If you want to close DO2, the output control word is: 8003 (hexadecimal). If the output control word is 8002, closing DO3 will also turn DO1 off.

12.2.2 Conversion relationship between communication value and actual value

12.2.2.1 Correspondence between communication value and actual value (available Val_t is the communication readout value and Val_s is the actual value)

The correspondence between the communication value and the actual secondary side measurement value is as follows:

Applicable parameters	Correspondence	Unit
Voltage Uan, Ubn, Ucn, Uab, Ubc, Uca	Val_s=Val_t/10	V
Current IA、IB、IC	Val_s=Val_t /1000	A
Power factor PFA、PFB、PFC、PFS	Val_s=Val_t /100	No unit
Frequence FR	Val_s=Val_t /100	Hz
Voltage total harmonic distortion rate THDUa、THDUb、THDUc Current total harmonic distortion rate THDIa、THDIb、THDIc	Val_s=Val_t /100	%

12.2.2.2 Voltage, current, power factor, frequency

Each electrical parameter occupies 1 WORD, taking the A-phase voltage Uan as an example. The communication readout value Val t is 2200, then the actual value is:Val s = Val t / $10=2200/10=220 \,\text{V}_{\odot}$

12.2.2.3 Power, reactive power, apparent power(Secondary; W/Var/VA)

Each electrical parameter occupies 2 WORDs, and the correspondence between the communication value and the actual value is: $Val_s=Val_t/100$; where $Val_t=the$ first word \times 65536+the second word. Taking the A-phase active power Pa as an example, the communication value is read from the address [24][25], and the communication value is 26000 from the address [26][27], that is, $Val_t=1\times65536+26000=91536$, the corresponding actual value is: $Val_s=Val_t/100=915.36W$.

12.2.2.4 Voltage and current harmonic data (voltage total harmonic distortion rate, current total harmonic distortion rate)

Each electrical parameter occupies 1 WORD, and the correspondence between the communication value and the actual value is:

Val_s=(Val_t/100)%. Taking the total harmonic distortion rate of phase A voltage as an example, the readout communication value Val_t is 157, then the actual value is Val_s=(Val_t / 100)%=1.57%, that is, the total harmonic distortion rate of phase A voltage is 1.57%.

12.2.2.5 Energy data (primary side)

The value of the primary side of the energy is the floating point variable data type. It uses the sign bit to represent the sign of the number, and the step code and the mantissa to represent the size of the number. The data format adopted by the instrument is IEEE754 data format with 24-bit precision. The high bit of the mantissa is always "1", so it is not saved. The bit distribution is as follows:

1-bit sign bit, 8-bit exponent bit, 23-bit mantissa, sign bit is the highest bit, and the mantissa is the lowest 23 bits.

Specific examples are as follows:

Sign bit S=0, ("1" negative, "0" positive);

Calculation index E=10001110, Turn into a decimal number 142;

Calculate mantissa M=100 1011 1010 1100 0000 0000, Turn into a decimal number 4959232.

Calculation formula:

Primary side electric energy =
$$(-1)^{s} \times 2^{(E-127)} \times \left(1 + \frac{M}{2^{23}}\right)$$

The calculation result in the above example is:

$$(-1)^0 \times 2^{(142-127)} \times \left(1 + \frac{4959232}{2^{23}}\right) = 52140 \text{ wh} = 52.14 \text{ kWh}$$

12.2.3 About the GSD file description

GSD File access:

The instrument's GSD file can be downloaded from the company's website at www.acrel.cn or from our customer service.

CD mode is sent with the product

When configuring the PROFIBUS master station, after loading the GSD file of the APM series instrument, the user parameters adopt the default values and do not need to be changed, as shown in the figure below.

13. Analysis of common fault

Fault content	Analysis	Note
No display on power	Check whether the power supply voltage is in the working voltage range.	
	Check the rated voltage and current of the primary side and secondary side is	
Incorrect reading of	correct.	
voltage and current	Check whether the wiring mode setting is consistent with the actual wiring.	
	Check voltage transformer, current transformer is in good condition.	
Incorrect power or	Check whether the wiring mode setting is consistent with the actual wiring.	
power factor	Check the voltage and current phase sequence is correct.	
	Check whether the address, baud rate, parity, etc. in the communication	
Communication is	settings are consistent with the host computer.	
abnormal	Check the RS485 converter is normal.	
	Parallel over 120 Ω resistance at the end of communication.	
	Check whether the IP address, subnet mask, gateway address, and port	
Ethernet communication	number settings are correct.	
is abnormal	Check whether the host computer and the meter network address is the same network segment	
	As with the TF card, check if the TF card is loose or damaged (view in communication or display).	
The extended module	Check whether the meter time is accurate. If the meter system time is set	
flashes red	incorrectly, the TF card will not be read.	
	If there is still a malfunction and the fault is not eliminated after the meter is	
	restarted, it is necessary to return to the factory for repair.	
The thermometer reads		
0 or -100	Check whether the module wiring is correct	

Headquarters: Acrel Co., LTD.

Address: No.253 Yulv Road Jiading District, Shanghai, China

TEL.: +86 13774416773

E-mail:Daisylin@acrel-electric.com

F-Postcode: 201801

Manufacturer: Jiangsu Acrel Electrical Manufacturing Co., LTD.

Address: No.5 Dongmeng Road, Dongmeng industrial Park, Nanzha Street, Jiangyin City, Jiangsu Province, China

Postcode: 214405